Bone repair and ultrasound stimulation: an insight into the interaction of LIPUS with the lacuno-canalicular network of cortical bone through a multiscale computational study.

Cécile Baron¹, Carine Guivier-Curien², Vu-Hieu Nguyen³, Salah Naili³

¹ Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille France
² Aix-Marseille Université, CNRS, Ecole Centrale, IRPHE UMR 7342, Marseille France
³ Université Paris Est, MSME UMR 8208 CNRS, Créteil France

Monastery Banz, June 29th, 2017
Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues: destroy (HIFU) and repair (LIPUS)

What is LIPUS? **Low Intensity Pulsed Ultrasound Stimulation**
LIPUS stimulates bone healing:

- FDA approval since 1994
- Commercial device: Exogen ®
Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues: destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation
LIPUS stimulates bone healing:
- FDA approval since 1994
- Commercial device: Exogen®

What mechanisms are responsible?
Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues: destroy (HIFU) and repair (LIPUS)

What is LIPUS? **Low Intensity Pulsed Ultrasound Stimulation**
LIPUS stimulates bone healing:

- FDA approval since 1994
- Commercial device: Exogen ®

What mechanisms are responsible?
Thermal effects and Mechanical effects
Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues: destroy (HIFU) and repair (LIPUS)

What is LIPUS? **Low Intensity Pulsed Ultrasound Stimulation**

LIPUS stimulates bone healing:

- FDA approval since 1994
- Commercial device: Exogen ®

What mechanisms are responsible?
Thermal effects and Mechanical effects

But how?
Open question!
(*Claes et al. 2007, Padilla et al. 2014*)
Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues: destroy (HIFU) and repair (LIPUS)

What is LIPUS? **Low Intensity Pulsed Ultrasound Stimulation**
LIPUS stimulates bone healing:
- FDA approval since 1994
- Commercial device: Exogen®

What mechanisms are responsible?
- Thermal effects and Mechanical effects

But how?
- Open question!
 (*Claes et al. 2007, Padilla et al. 2014*)
Bone Tissue

How is cortical bone tissue organized?

- **Porous and multiscale:**
 - Vascular porosity (HV): Havers and Volkman canals ($\varnothing \approx 100 \, \mu m$)
 - Lacuno-canalicular network (LCN): lacunae ($\varnothing \approx 10 \, \mu m$) + canaliculi ($\varnothing < 1 \, \mu m$)

- **Bone cells:** osteocytes

Mechnotransduction
Fluid shear stress on osteocyte \rightarrow bone remodelling

Cowin et al. 1991, Klein-Nulend et al. 1995

Cortical bone = double-level porous medium
Bone Tissue

How is cortical bone tissue organized?

- Porous and multiscale:
 - vascular porosity (HV): Havers and Volkman canals (Ø ≈ 100 µm)
 - lacuno-canalicular network (LCN): lacunae (Ø ≈ 10 µm) + canaliculi (Ø < 1 µm)
- Bone cells: osteocytes

Mechanotransduction
Fluid shear stress on osteocyte → bone remodelling
Cowin et al. 1991, Klein-Nulend et al. 1995

Cortical bone = double-level porous medium
Hypothesis and aims

Hypothesis: US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks:
- Multiscale phenomena to understand and analyze
- Multiphysics: acoustics, fluid and structure
- Coupling multiscale and multiphysics
Hypothesis and aims

Hypothesis: US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks:
- Multiscale phenomena to understand and analyze
- Multiphysics: acoustics, fluid and structure
- Coupling multiscale and multiphysics

Development of relevant FE models to understand LIPUS mechanisms
Hypothesis and aims

Hypothesis: US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks:
- Multiscale phenomena to understand and analyze
- Multiphysics: acoustics, fluid and structure
- Coupling multiscale and multiphysics

Development of **relevant FE models** to understand LIPUS mechanisms
Models

Biphasic medium Model + US : ModBone

- Vascular pores (HV) = fluid phase
 HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM)
 anisotropic solid (Scheiner et al. 2015) + LCN → equivalent medium (Biot’s model)
Models

Biphasic medium Model + US : ModBone

- Vascular pores (HV) = fluid phase
 HV pores reconstructed from binarized µCT images (22.5 µm)

- Poroelastic bone matrix (PBM)
 anisotropic solid *(Scheiner et al. 2015)* + LCN → equivalent medium (Biot’s model)

- Ultrasound stimulation (US) from Exogen device
 f=1 MHz, pressure=2 kPa, duty cycle=20%, pulse duration=1 ms,
 Øtransducer=20 mm
Models

Biphasic medium Model + US : ModBone

- Vascular pores (HV) = fluid phase
 HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM)
 anisotropic solid (Scheiner et al. 2015) + LCN → equivalent medium (Biot’s model)

- Ultrasound stimulation (US) from Exogen device
 f=1 MHz, pressure=2 kPa, duty cycle=20%, pulse duration=1 ms, Øtransducer=20 mm
Models

Biphasic medium Model + US : ModBone

- Vascular pores (HV) = fluid phase
 HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM)
 anisotropic solid *(Scheiner et al. 2015)* + LCN \rightarrow equivalent medium (Biot’s model)

- Ultrasound stimulation (US) from Exogen device
 $f=1$ MHz, pressure=2 kPa, duty cycle=20%, pulse duration=1 ms, ϕtransducer=20 mm

![Diagram of Models](image)

Table

<table>
<thead>
<tr>
<th>t (ms)</th>
<th>P (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Baron, Guvier-Curien et al.

US and bone healing

Monastery Banz, June 29th, 2017
Models

Osteocyte Model : ModOst

- Osteocyte cell (solid phase)
- Extracellular matrix, ECM (solid phase)
- Interstitial Fluid (IFluid) (fluid phase)
Models

Osteocyte Model : ModOst

- Osteocyte cell (solid phase)
- Extracellular matrix, ECM (solid phase)
- Interstitial Fluid (IFluid) (fluid phase)
Models

Osteocyte Model: ModOst

- **Osteocyte cell** (solid phase)
- **Extracellular matrix, ECM** (solid phase)
- **Interstitial Fluid (IFluid)** (fluid phase)
2D and 3D coupling between acoustics and fluid and fluid-solid interaction

Software : Comsol Multiphysics

- ModBone (2D) : US stimulation at the mesoscale
 Time-dependent problem
 Weak form of wave propagation in poroelastic medium
 + boundary conditions

 \(\Delta x_{\text{bone}} \approx 0.7 \text{ mm}, \Delta x_{\text{water}} \approx 0.4 \text{ mm} \) and \(\Delta t \approx 0.1 \mu \text{s} \)

\(\rightarrow 40 h \) to simulate a single cycle propagation.

(Nguyen et al. 2010)
FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction

Software: Comsol Multiphysics

- **ModBone (2D)**: US stimulation at the mesoscale
 - Time-dependent problem
 - Weak form of wave propagation in poroelastic medium
 - + boundary conditions

 \[(Nguyen \ et \ al. \ 2010)\]

 \[\Delta x_{\text{bone}} \approx 0.7 \ \text{mm}, \ \Delta x_{\text{water}} \approx 0.4 \ \text{mm} \text{ and } \Delta t \approx 0.1 \ \mu\text{s} \]

 \[\rightarrow \ 40h \text{ to simulate a single cycle propagation.}\]

- input parameters:
 - US stimulation parameters
 - f=1MHz, pressure=2 kPa, duty cycle=20%, pulse duration=1 ms,
 - Øtransducer=10 mm
 - surrounding fluid properties = water
 - bone material properties = anisotropic poroelasticity
 \[(Scheiner \ et \ al. \ 2015, \ Goulet \ et \ al. \ 2008, \ Nguyen \ et \ al. \ 2010, \ Cowin \ et \ al. \ 2009)\]

- output parameter: IFluid pressure gradient
FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction

Software: Comsol Multiphysics

ModBone (2D): US stimulation at the mesoscale
Time-dependent problem
Weak form of wave propagation in poroelastic medium
+ boundary conditions

(Nguyen et al. 2010)

\[\Delta x_{\text{bone}} \approx 0.7 \text{ mm}, \Delta x_{\text{water}} \approx 0.4 \text{ mm and } \Delta t \approx 0.1 \mu s \]

\[\rightarrow 40h \text{ to simulate a single cycle propagation.} \]

- input parameters:
 - US stimulation parameters
 - f=1MHz, pressure=2 kPa, duty cycle=20%, pulse duration=1 ms,
 - Øtransducer=10 mm
 - surrounding fluid properties = water
 - bone material properties = anisotropic poroelasticity
 - (Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)

- output parameter: IFluid pressure gradient
Results and Discussion: ModBone

Acoustic pressure and IFluid pressure (Pa)

$t = 4 \mu s$

$\Delta 1.76 \times 10^3 x 10^3$

$\Delta 3.21 \times 10^3 x 10^3$

$\Delta -986$

$\Delta -3.16 \times 10^3$

$t = 20 \mu s$

$\Delta 7.12 \times 10^3 x 10^3$

$\Delta 8.69 \times 10^3 x 10^3$

$\Delta -6.81 \times 10^3$

$\Delta -8.74 \times 10^3$

IFluid pressure (IFluid P) difference induced by US stimulation on 1 cycle

Max|IFluid $P_{\text{periosteum}} - IFluid P_{\text{endosteum}}| \approx 11000 \text{ Pa}

\rightarrow IFluid P gradient = 3.8 \text{ Pa/}\mu\text{m}

IFluid P gradient $\approx 30 \text{ Pa/}\mu\text{m}$ (Anderson et al. 2005, Verbruggen et al. 2012, 2014)

\rightarrow 8\text{-times lower than previous studies considering physiological mechanical loading.}

Fluid shear stress on osteocyte?
Results and Discussion: ModBone

Acoustic pressure and IFluid pressure (Pa)

- $t = 4 \mu s$
- $t = 20 \mu s$

IFluid pressure (IFluid P) difference induced by US stimulation on 1 cycle

$$\text{Max}|\text{IFluid } P_{\text{periosteum}} - \text{IFluid } P_{\text{endosteum}}| \approx 11000 \text{ Pa}$$

\rightarrow IFluid P gradient $= 3.8 \text{ Pa}/\mu\text{m}$

IFluid P gradient $\approx 30 \text{ Pa}/\mu\text{m}$ (Anderson et al. 2005, Verbruggen et al. 2012, 2014)

\rightarrow 8-times lower than previous studies considering physiological mechanical loading.

Fluid shear stress on osteocyte?
FE simulation

- **ModOst (3D)**:
 Fluid Structure Interaction Model (one-way coupling)

- **Input parameter**: IFluid P gradient from ModBone: 3.8 Pa/\mu m
- **Output parameter**: fluid shear stress on osteocyte: τ

IFluid domain: newtonian,
- $\rho=997 \text{ kg/m}^3$,
- $\mu=885 \times 10^{-4} \text{ kg.m}^{-1}.\text{s}^{-1}$

Solid domain: linear elastic,
- ECM: $E=16.6 \text{ GPa}$, $\nu=0.38$;
- osteocyte: $E=4.47 \text{ kPa}$, $\nu=0.3$
Results and Discussion: ModOst

Fluid shear stress on osteocyte (cell body and processes)

\[\tau_{\text{max}} \approx 0.6 \text{ Pa} \]

(McGarry et al. 2004)

Shear stress patterns obviously related to simple symmetrical geometry and boundary conditions.

Shear stress levels in agreement with literature and consistent patterns with higher values on processes than on cell body.

(Anderson et al. 2005, Verbruggen et al. 2014)

Theoretical shear stress interval for osteocyte under physiological load: 0.8-3 Pa

(Weinbaum et al. 1994)
Results and Discussion: ModOst

Fluid shear stress on osteocyte (cell body and processes)

$\tau_{\text{max}} \approx 0.6 \text{ Pa}$

(McGarry et al. 2004)

- Shear stress patterns obviously related to simple symmetrical geometry and boundary conditions
- Shear stress levels in agreement with literature and consistent patterns with higher values on processes than on cell body
 (Anderson et al. 2005, Verbruggen et al. 2014)
- Theoretical shear stress interval for osteocyte under physiological load: 0.8-3 Pa
 (Weinbaum et al. 1994)
Limitations of the study

- a realistic model of the bone callus?
 - geometry
 - healing tissues properties
Limitations of the study

- a realistic model of the bone callus?
 - geometry
 - healing tissues properties

Bailon-Plaza et al. 2001, Claes et Heigele 1999
Limitations of the study

- a realistic model of the bone callus?
 - geometry
 - healing tissues properties

Vascular porosity?

Goulet et al. 2008

Bailon-Plaza et al. 2001, Claes et Heigele 1999
Limitations of the study

- a realistic model of the bone callus?
Limitations of the study

- a realistic model of the lacuno-canaliculi system?

Image from Creatis (Lyon, France)
Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ Fluid shear stress ≈ lower than the lower bound of prediction interval under physiological load

Poroelastic model and US

- LCN permeability 2.2×10^{-22} m2 (Cowin et al. 2009)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- stimulation frequency higher than physiological loading (1 - 100 Hz)
- pulsed ultrasound : 2 frequencies ⇒ repetition frequency and signal frequency
 pulse duration = 1 ms vs signal period = 1 µs
Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ Fluid shear stress \(\approx \) **lower than the lower bound of prediction interval under physiological load**

Poroelastic model and US

- LCN permeability \(2.2 \times 10^{-22} \text{ m}^2 \) (*Cowin et al. 2009*)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- stimulation frequency higher than physiological loading (1 - 100 Hz)
- pulsed ultrasound : 2 frequencies ⇒ repetition frequency and signal frequency
 pulse duration = 1 ms vs signal period = 1 \(\mu \text{s} \)

1 ms \(\approx \) relaxation time of fluid in canaliculi (*Swan et al. 2004*)
Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ Fluid shear stress ≈ lower than the lower bound of prediction interval under physiological load

Poroelastic model and US

- LCN permeability $2.2 \times 10^{-22} \text{ m}^2$ (Cowin et al. 2009)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- stimulation frequency higher than physiological loading (1 - 100 Hz)
- pulsed ultrasound : 2 frequencies ⇒ repetition frequency and signal frequency
 pulse duration = 1 ms vs signal period = 1 μs
 1 ms ≈ relaxation time of fluid in canaliculi (Swan et al. 2004)
Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ Fluid shear stress \(\approx\) **lower than the lower bound of prediction interval under physiological load**

Osteocyte process model

- Zoom on the osteocyte process into the canaliculi
 → GAG fibers → **strain amplification**

You et al. 2001
Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ Fluid shear stress ≈ lower than the lower bound of prediction interval under physiological load

Osteocyte process model

- Zoom on the osteocyte process into the canaliculi
 → GAG fibers → strain amplification

Drag forces F_d

$$F_s = 2\pi aL\tau \approx 16.10^{-12}N \Rightarrow F_d \approx 330.10^{-12}N$$

$a = 0.22\ \mu m$: process radius ; $L = 20\ \mu m$: process length.
Conclusion and Perspectives

Tissue scale

Microscopic scale

Thank you for your attention. Any questions (or answers)?

cecile.baron@univ-amu.fr
carine.guivier@univ-amu.fr
Wave propagation in the anisotropic poroelastic matrix (from Nguyen et al. 2012)

The constitutive equations for the anisotropic linear poroelastic material are given by

\[\sigma = \mathbb{C} : \varepsilon - \alpha p, \]

\[-\frac{1}{M} p = \nabla \cdot \mathbf{w} + \alpha : \varepsilon, \]

where \(\mathbb{C}(x) \) is the elasticity fourth-order tensor of drained porous material; \(\alpha \), which is a symmetric second-order tensor, is the Biot effective tensor; \(M \) is the Biot scalar modulus; \(\varepsilon(x,t) \) is the infinitesimal strain tensor, which is defined as the symmetric part of \(\nabla \mathbf{u}^s \).

\[\mathbf{w} = \phi (\mathbf{u}^f - \mathbf{u}^s) \]

boundary conditions: pressure and stress fields continuity + open pore condition (continuity of the normal relative velocity between fluid and solid)
Poroelastic cortical bone properties

Transverse isotropic extralacunar matrix

$$\begin{pmatrix}
22.88 & 10.14 & 0 \\
10.14 & 29.60 & 0 \\
0 & 0 & 6.98
\end{pmatrix} \text{ (GPa)}$$

(Scheiner et al. 2015)

Mass density: $\rho = 1.9 \text{ g/cm}^3$

Isotropic LCN permeability: $2.2 \times 10^{-22} \text{ m}^2$ (Smith et al. 2002, Cowin et al. 2009)

Other Biot’s parameters from NGuyen et al. 2016

$\phi = 5\%$, $\alpha_1 = 0.11$, $\alpha_2 = 0.15$, $M = 35.6 \text{ GPa}$.
Poroelastic healing tissues properties

4 weeks_ Isotropic solid matrix

- **Granular tissue**
 \[
 \begin{pmatrix}
 2.502 & 2.5 & 0 \\
 2.5 & 2.502 & 0 \\
 0 & 0 & 0.001
 \end{pmatrix} \text{(GPa)}
\]
 \(\phi=90\%\)
 \(\alpha_1=0.98\)
 \(\alpha_2=0.96\)
 \(M = 2.2 \text{ MPa}\)
 \(\rho = 1.01 \text{ g/cm}^2\)

- **Cartilage**
 \[
 \begin{pmatrix}
 5.98 & 5.3 & 0 \\
 5.3 & 5.98 & 0 \\
 0 & 0 & 0.34
 \end{pmatrix} \text{(GPa)}
\]
 \(\phi=80\%\)
 \(\alpha_1=0.98\)
 \(\alpha_2=0.96\)
 \(M = 2.4 \text{ MPa}\)
 \(\rho = 1.04 \text{ g/cm}^2\)

- **Woven bone**
 \[
 \begin{pmatrix}
 17.1 & 12.9 & 0 \\
 12.9 & 17.1 & 0 \\
 0 & 0 & 2.1
 \end{pmatrix} \text{(GPa)}
\]
 \(\phi=50\%\)
 \(\alpha_1=0.976\)
 \(\alpha_2=0.955\)
 \(M = 2.55 \text{ MPa}\)
 \(\rho = 1.25 \text{ g/cm}^2\)
Mechanical properties of healing tissue

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>E (GPa)</th>
<th>ν</th>
<th>k (m^2)</th>
<th>p (Pa)</th>
<th>GradPress (Pa/μm)</th>
<th>τ_{max} (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone</td>
<td>18</td>
<td>0.28</td>
<td>2.2×10^{-22}</td>
<td>0.05</td>
<td>3.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Woven bone</td>
<td>9</td>
<td>0.28</td>
<td>2.2×10^{-22}</td>
<td>0.05</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>Immature bone</td>
<td>1</td>
<td>0.325</td>
<td>10^{-13}</td>
<td>0.8</td>
<td>8.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Mechanical properties of healing tissue

<table>
<thead>
<tr>
<th></th>
<th>E (GPa)</th>
<th>(\nu)</th>
<th>(k) (m²)</th>
<th>p</th>
<th>GradPress (Pa/µm)</th>
<th>(\tau_{max}) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone</td>
<td>18</td>
<td>0.28</td>
<td>(2.2 \times 10^{-22})</td>
<td>0.05</td>
<td>3.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Woven bone</td>
<td>9</td>
<td>0.28</td>
<td>(2.2 \times 10^{-22})</td>
<td>0.05</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>Immature bone</td>
<td>1</td>
<td>0.325</td>
<td>(10^{-13})</td>
<td>0.8</td>
<td>8.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

![Graph showing fluid pressure difference over time for different tissue types](image-url)
Mesh