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Abstract—This paper uses Bayesian networks to investigate the
impact of three different kind of inputs, namely, physiological,
cognitive and affect features, on workload estimation, from
a computational point of view. The ability of the proposed
models to infer the workload variation of subjects involved in
successive tasks demanding different levels of cognitive resources
is discussed, in term of two criteria to be jointly optimized: the
diversity, i.e. the ability of the model to perform on different
subjects, and the accuracy, i.e., how close from the (subjectively
estimated) workload level the model prediction is.

I. I NTRODUCTION

Operators involved in complex multitask activities, such
as piloting a helicopter, must constantly make quick and
relevant decisions. Advanced systems provide them with some
assistance, by delivering information on the task’s context
and by automating some processes. However, these automated
agents also impose new information processing demands and
might thus increase the level of cognitive workload (denoted as
workloadfrom now on)[1]. Therefore, intelligent systems, able
to adapt to the current level of operators’ workload might be
more efficient. Such systems should provide greater assistance
in case of overload, but should delegate more functions to the
operator in case of low workload (likely to result in a lack of
vigilance) [2], [3], [4].

Computational models have been proposed to infer cognitive
states, such as workload or distraction, from task performance
analyses or sensorimotor features (gaze, head movements, etc.)
[5], [6], [7]. However, for these features to make sense, they
have to be compared to nominal values that are dependent on
the task context. More direct and task independent features
can be extracted from physiological measurements. Indeed,
changes in the subject’s cognitive state may result in changes
in physiological data [8], specifically (but not exclusively)
when they are under the control of the autonomic nervous sys-
tem (ANS). The latter is responsible for maintaining the body’s
homeostasis, noticeably through the orthosympathetic branch
which mobilizes cardiorespiratoy and energy resources in
response to the changing demands of the external and internal
milieu [9]. Thus, electrocardiogram (ECG), electromyogram
(EMG), skin conductivity (SC), and respiration were used in
[10] to infer the stress level by drivers using linear discri-

minant analysis. In [11], the authors developed an Artificial
Neural Network (ANN) taking electroencephalogram (EEG),
electrooculographic (EOG) and respiration as inputs to assess
workload levels. ECG, EEG and EOG were also used in [12]
to derive an information-theoretic indicator of cognitivestate.
Support Vector Machine and ANN were applied to workload
estimation in [13], using EEG, SC, respiration, and heart rate
(HR) data. These models rely on physiological measurements
to infer cognitive states but not necessary workload specifically
(for example, stress, inferred in [10], should not be confused
with workload thought it partly results from overload [14]).

Additionnally, several works, taking place in the field of
affective computing, have addressed the problem of inferring
users’ affects from physiological signals [15], [16]. Indeed, it
has been shown that humans’ emotional intelligence provides
them the capacity to reason about emotions, and of emotions
to enhance thinking[17]. Thus, Isen et al. [18] showed that
positive affect enhance problem solving and decision making.
Therefore, affective computing aims at endowing machines
with emotional skills, in particular, the ability of perceiving
and adapting to user’s current affective state to improve the
efficiency of human-machine interfaces.

The objective of this work was to use Bayesian networks
(BN) to study the contribution of physiological, cognitiveand
affective features on workload estimation, from a computa-
tional point of view. We firstly collected representative data
through a dedicated experimental protocol. Since we wantedto
use non-invasive and minimally intrusive sensors, we restricted
the measurements to EMG, HR, SC and respiration and
did not measure EEG (incompatible with helmets wore by
helicopter or fighter pilots for example). Entropy values of
these signals define the physiological inputs of our models.
The reaction time (RT) to a secondary task is used as a
cognitive feature [19], [3]. Finally, the positive and negative
affect scale (PANAS) [20], [21] was used to evaluate the
participants’ subjective affective state during the experiment.

Different BN structures, built from expert knowledge, are
tested, using in turn several combinations of these features.
Their performances are evaluated in term of two criteria to be
jointly optimized: the diversity (i.e., the ability of the model to
be functional for different subjects), and the accuracy (i.e., how



close from the workload level the model prediction is). The
ground truth is provided by subjective evaluations of workload
collected during the experiment.

Rather than assessing the ability of the BN models to infer
the workload level, we focused on how good they are in
predicting theworkload variationbetween successive tasks.
Indeed, in the context of defining adaptive intelligent systems,
an erroneous prediction of the workload level resulting in
a false prediction of workload change (i.e., in a predicted
variation opposite to reality) should be absolutely avoided. It
might drive the system to undertake actions opposite to those
required by the operator’s state, with dramatic consequences.

Section II describes the experimental protocol used to
collect representative data. An analysis of these data is also
performed in this section to ensure that the subjects’ workload
has been manipulated by the experimental paradigm. The pro-
posed models are presented in sec. III and their performances
are assessed in sec. IV in term of two criteria to be jointly
optimized: the diversity and the accuracy.

II. M ATERIAL AND METHOD

A. Subjects

Ten subjects (9 males and 1 female, aged30 ± 10.7
years) with normal or corrected to normal hearing and seeing,
participated in the experiment.

B. Material

The subjects sat in the dark, facing a standard 24” monitor,
where graphical dynamic flying scenes generated by the home-
grown ICE software [22] were displayed. An experimenter’s
computer was used to acquire all the data synchronously,
using the Captiv Software [23]. These data were made of
the simulation data (e.g., aircraft position) sampled at 100Hz,
and of physiological data, acquired at a sampling rate of
2048Hz using the FlexComp Infinity sensors and encoder [24].
The subjects bore stereo headphones, so that they could hear
pre-recorded instructions (the instructions’ tone and content
were then strictly identical for each subject) and the task
related noises such as the engine noise (leading to a greater
immersion) or the possible alarms.

C. Procedure

Using a regular joystick, subjects were asked to pilot a flying
aircraft and to do their best to follow a trajectory defined by
60 rings, alternatively red and yellow. The trajectories varied
only along the vertical dimension. The aircraft’s speed was
maintained constant at the same predefined value for all the
trajectories. The ratio of hit rings over the total number ofrings
in the trajectory appeared on the cockpit dashboard. There was
also a green or red light indicating whether the last ring had
been hit or missed.

The experiment was organized in 5 sessions of 6 trials. Each
trial lasted approximately 90sec1. In the first three sessions

1Though the speed is maintained constant, the duration of each trial is
not necessary the same, since the aircraft’s trajectory canbe more or less
sinusoidal

(labeledD1A0, D2A0andD3A0), the subjects were presented
with three different trajectories of increasing difficulty(D1,
D2, and D3), that remained the same for the 6 trials of
each session. The trajectory difficulty was an independent
variable meant to manipulate the task workload requirement.
It was varied by changing the vertical distance between two
successive rings, while keeping their depth distance constant.
In the last two sessions (labeledD1A1andD3A1) the subjects
were asked to fly again on the simplest and the hardest D1
and D3 trajectories, and to try to beat their own mean scores
over these trajectories. Moreover, a strident alarm was emitted
in case of a missed ring. This challenge and the alarm were
introduced in order to maintain the subjects’ motivation and
implication in the task.

For each of the five sessions, a secondary task was intro-
duced. Two geometrical shapes (a square or a triangle) ap-
peared on the screen during 1sec, at pseudo-random positions
(the ring apparition zone was avoided, and the same number
of targets appeared in each of the four screen quarters) and
at pseudo-random times (no apparition while the ring was
crossed, and minimum time interval of 1.5sec between two
successive targets). The subjects had to press a button on the
joystick with the forefinger as quickly as possible in response
to the square target apparition. They should not react to a
triangle target.

Fig. 1 shows a typical screen shot of the simulated scene.

Fig. 1. Screen shot of a typical flying scene created by ICE. The ratio of hit
rings over the total number of rings in the trajectory appeared on the cockpit
dashboard (e.g. 1/60) and a green or red light indicated whether the last ring
had been hit or missed.

D. Dependent variables

Performance on the primary (percentage of hit rings) and on
the secondary tasks (false and good detection rates; RT) were
recorded. The physiological variables comprised the following
measurements:

• HR, estimated from the ECG by the Captiv software,
using R-R intervals;

• Root mean squares of the flexor digitorum EMG (RMS1)
and of the right trapezius descendens EMG (RMS2);

• Respiration (R), measured through chest expansion;
• SC, measured using electrodes placed on the first and

little fingers of the left hand (temperature in the room
equal to19.33± 0.98◦C).

Finally, psychological data were also collected at the end of
each session. The subjects self-assessed their own workload
during the performed task, using the NASA Task Load Index



(TLX) scale [25]. The NASA TLX asks the subjects to rate
their perceived workload on six different subscales. At the
end of the experiment, these six components are matched two
by two and the subjects have to choose for each couple which
component best described the workload in the performed task.
Each component score can thus be weighted accordingly to the
number of times it has been chosen in the matching phase.
In the present experiment, the NASA TLX rates on the six
subscales are weighted and summed for each sessions to result
in a singleWorkload Index (WI)(normalized on[0, 1]) per
session. The subjects also filled the PANAS [20], [21] before
the experimentation and after each session. This instrument
was used to provide information on participants’ affective
reactions to the experiment. It comprised two affects’ scale:
positive (interested, excited, etc.), and negative (distressed,
scared, etc.). The 20 items of this instrument were rated on a
five point Likert scale from: (1) = “very slightly or not at all”
to (5) = “Extremely”. The ratings for each participant were
normalized between 0 and 1, and the positive affect scores
(PA) reversed (1− PA) for all the scores to be interpretable
in a consistent way. These normalized negative and reversed
positive scores were then summed and normalized on[0, 1],
resulting in theAffect Index (AI)used in the following of the
paper.

E. Analysis of experimental data

The impact of the primary task difficulty on performance
in both the primary and secondary tasks is assessed through
analysis of variance (ANOVA) statistical tests. There is no
significant difference between trials for a same level of dif-
ficulty (p=0.13) whereas the difference is significant between
sessions (F(4,36)=26.708, p=0.000). A post-hoc analysis (Stu-
dent Neuwman-Keuls) indicates that scores are statistically
different for the different difficulty levels (p < 0.001). The
difficulty level also impacts the RT on the secondary task
(F(4,24)=14.084; p=0.0000) whereas there is no intra-session
effect (p=0.03). Finally, the TLX scores also increase withdif-
ficulty’s session: differences are significant between sessions
(F(4,26)=12.284, p=0.000). This statistical analysis establishes
that subjects experienced different levels of workload during
the task. This should be reflected in the physiological data and
be captured by the model.

The analysis of the AI shows that variations of affects
during the experiments are quite different from one subject
to the others. Generally speaking, the variations are small: the
maximal variation over all sessions is observed for subject5
and is equal to15%. Some subjects (noticeably, the subject 5)
expressed negative affects prior to the task. For some subjects,
the negative affects tend to decrease with the task difficulty,
whereas it is the opposite for others. Finally, this analysis do
not point out any striking consistency between affect variations
and difficuly or workload (ass assessed by WI) variations (see
e.g., subject 4, on Fig. 2). Therefore, it is not sure that adding
knowledge about the subjects’ affects to the model might
improve its ability to infer workload.

III. M ODEL

A. Selection of output and input features

A data-driven approach to modeling problem requires first
to assign some data with the correct class labels so that
the relationship between the input features (derived from the
physiological data in the present case) and the classes (the
model’s output) can be automatically discovered and extracted
in the learning phase. As stated in sec. II-E, we can only
rely on a subjective rating scale to label our ground truth.
This adds some noise in the pattern recognition process. To
reduce the noise in the process as much as possible, the input
features have also to be optimized: the more representativethe
features, the simpler the task for the classifier, thus the better
its expected performance [26].

We expect (and we visually observed) changes in the
variability or stability of the physiological signals withchanges
in the subjects’ cognitive states. Indeed, the physiological
signals we recorded are mainly under the control of the ANS,
which regulates the body’s homeostasis through successive
activations of the sympathetic and parasympathetic systems
(resulting in mobilization or slowing down of the organism)
[27]. These changes can be captured by the Shannon’s entropy
of the physiological data, which will be the input for our
model. To the best of our knowledge, such features have never
been used in this context. The entropy of the random variable
(rv) X is a measure of the average uncertainty inX [28].
Stated in a different and simpler way, it is a measure of
disorder. Before the entropies to be estimated, the noise in
the raw signals is firstly smoothed using a low-pass median
filter. The first and last seconds of each trial’s signal are also
removed to avoid possible starting and ending effects. Then,
the data are normalized between 0 and 1, taking the minimal
and maximal values observed on the first three sessions (used
as training sessions). Entropies are estimated on 15sec long
windows slided by 5sec along the signals, using an histogram
of 41 bins that ranges on[0, 1]. Therefore, there is about
90 values per sessions and per subject. Entropy values are
also normalized between 0 and 1 by taking the maximal and
minimal values over the first three sessions for each subject.

It can be observed that the variation of the mean entropy
features is consistent with the variation of the performance
on the primary task, the RT and the WI (see Fig. 2 showing
the subject 4’s features as an illustrative example). However,
we observed the variation of the physiological data to be
idiosyncratic: e.g., the mean entropy values of SC might
decrease for some subjects or increse for some others (as
for the subject 4) with the difficulty level. As a results, the
models will be individual (trained and tested on each subject
separately).

B. Model definition

BN are defined to infer the subject’s WI on each session,
from different kind of features. Firstly, we examine the impact
of the number and type of the physiological inputs on the
model performance. To this end, different classifiers are tested,



Fig. 2. Mean physiological feature values (entropy H of the signals),
performance on the primary task, reaction times (RT), workload and affect
index for each session performed by subject 4.

each taking one, two or three of the possible physiological
features SC, R, HR, RMS1 and RMS22 as inputs. As a result,
25 classifiers with different physiological nodes as direct
parents of the WI node (structure 1) are trained and tested.

Then, the impact of adding to the model a cognitive feature,
namely, the RT, is evaluated. Whereas in BN with structure 1,
WI node was a direct child of the physiological nodes, it is
now a child of the RT node, which is itself a child of the
physiological nodes. This defines the structure 2.

Finally, we wanted to assess how the affective state of the
subject could impact the physiological data, and so, the pre-
diction of the WI score. Therefore, the AI is also introducedas
a possible parent of the physiological nodes in both structures.
The different model structures are presented on Fig. 3 for a
classifier made of two physiological nodesΦ1 andΦ2.

Structure 1 Structure 2

Fig. 3. Bayesian Network models inferring the WI value from two
physiological featuresΦ1 and Φ2 either directly (Structure 1) or via RT
(Structure 2). The models are tested with or without a AI nodeas parent of
theΦ nodes (thus, this link is dashed on the graph). There can alsobe either
a single or three physiological nodes.

The joint probability density functions (pdf) described by
the BN are estimated on the training set using histograms
with the following parameters (rv take on values in[0, 1],
but RT, taking on values in[0,+∞[): 5 bins of width 0.2

2For simplification purposes, the rv denoting the entropy features are named
as the acronyms of the corresponding physiological data

for the physiological rv, 20 bins of width 0.05 for WI and
AI, and 16 bins of widthexp(0.2), with the first bin centered
on exp(−3.7) and the last bin taking all the values greater
than exp(−0.9) for RT. For each subject, the training set is
made of the data collected on the first three sessionsD1A0,
D2A0 and D3A0. The testing set is made of the two last
sessionsD1A1 and D3A1. Both the learning and inference
stages have been implemented using the Bayes Net Toolbox
for Matlab [29]. Because there are some missing data (HR
in particular could not be reliably recorded sometimes, and
there is not necessary one RT value per measurement window),
the Expectation Maximization algorithm has been used with a
stopping criterion of 10 iterations).

C. Assessing the model performances

The performance of the models is assessed by looking at
the differences in the WI betweenD1A1 andD3A1 sessions.
The model output will be deemed as correct if the observed
and inferred WI are evolving the same way, that is, if the
performance indexρ, defined as follow, is positive:

ρ = sign(∆) · sign(∆∗) · |
∆∗

∆
|, if ∆∗ < ∆ (1)

= sign(∆) · sign(∆∗) · |
∆

∆∗
|, else, (2)

where∆ is the difference between the subjects’ WI on sessions
D3A1andD3A1, and∆∗ the difference between the predicted
WI on these two sessions. The quality of the model perfor-
mance is given by the distance to 1 (the closer, the better).
A fine analysis of the model’s false detections is useless
since we want this false detection rate to be null. Indeed, as
stated in sec. I, a false estimation of the workload variation
between successive tasks can not be accepted: it would lead
the assistance system to undertake unadapted measures, which
could have worse consequences than doing nothing.

For each model, we are looking at the performance over
the subject set. Thus, we want the maximum number of
subjects to be correctly detected, with aρ score as close as
possible to 1. This is a two-variable optimization problem,
where the first parameter to be optimized is the model diversity
and the second, its accuracy. The model diversity is assessed
by looking at the percentage of subjects correctly detected
(S). Also, to allow for comparisons between the accuracy
performances,θ, the normalized area under theρ curve, plotted
as a decreasing function ofS, is used rather thanρ:

θ = 10 ·

∑
ρ

S
, θ ∈ [0, 1]. (3)

IV. RESULTS

From Fig. 4, it can be seen that most of the models are per-
formant in either one of the twodiversity (S) or accuracy(θ)
criteria. However, we are interested in the models performant
in both dimensions simultaneously. Depending on the criterion
that is retained, the best model will be different. Table I
presents the models that perform best on both the accuracy
and diversity criteria, using a trade-off favouring alternatively
each criterion. The trade-off is obtained by looking at the best



Fig. 4. Performance of the models in terms of diversity (S score) and
accuracy (θ score). The best models lie in the upper right-hand side quarter
of the graph.

TABLE I
BEST MODELS IN TERM OF A TRADE-OFF PERFORMANCE BETWEEN

DIVERSITY AND ACCURACY, FAVOURING EACH OF THESE TWO CRITERIA
ALTERNATIVELY

Bestθ score with aS score of at least50%
Performance
criterion

Structure Physiological
nodes

S θ AI
node

Maximal
Accuracyθ

1 SC;R;RMS1 60 0.72 Yes

BestS score with aθ score of at least50%
Performance
criterion

Structure Physiological
nodes

S θ AI
node

Maximal
Diversity S

2 HR;RMS2;RMS1 70 0.65 Yes

model in term of accuracy (respectively, diversity) in the subset
of models that obtain a score of at least 50% on the diversity
(respectively, accuracy) criterion.

To analyze the impact of the number of physiological inputs,
of RT and of AI on the models’ performance, we will look at
the set of best models, that is, the models with a performance
greater than 50% for both diversity and accuracy criteria
(Figs. 5 and 6). Notice that these are the models lying in the
upper right hand side quarter of Fig. 4.

It is obvious from Figs. 5 and 6 that adding the AI node
(i.e. information about the subjects’ affective states) improves
performance the most. Thus, when there is a AI node,20% of
the models fit the “good model” criterion with two physiolog-
ical nodes only, and this number reaches30% in case of three
physiological nodes. Without the AI node, three physiological
nodes are required to get some good models (10% only) and
observation of the Fig. 6 shows that these models also contain
the RT node (structure 2) since there are no good model with
structure 1 and without AI. When structure 2 is used (whatever
the number of physiological nodes) and a AI node included,
the percentage of good models reaches32%.

V. D ISCUSSION AND CONCLUSION

In this paper, BN are proposed to infer the variation of
workload for operators involved in multitask activities, from
physiological, cognitive, and affective features. The primary
objective is to examine, from a computational point of view,
the impact of these different types of information on workload
estimation. Therefore, two BN structures with different num-
ber of inputs are tested and compared in term of two criteria

Fig. 5. Percentage of good models (with performance greaterthan 50%
for both accuracy and diversity criteria) for the differentphysiological node
numbers (no distinction is made between the two possible BN structures).
Models with or without the AI node are compared.

Fig. 6. Percentage of good models (with performance greaterthan 50%
for both accuracy and diversity criteria) for the differentstructures (whatever
the number of physiological node). Models with or without the AI node are
compared.

to be jointly optimized: the accuracy and the diversity of the
classifier.

The most striking result of this study is to put forward
how taking into account subjects’ affective state increases
performance on workload estimation. Indeed, increasing the
number of physiological inputs, and adding cognitive informa-
tion (RT) in the model increase the number of “good models”
(models with a performance greater than 50% on both the
accuracy and diversity criteria), as could be expected from
literature (see e.g. [30], [31]). But coupling these conditions
with some knowledge about the subjects’ affects (through the
use of features derived from the PANAS questionnaire outputs)
outstandingly improves models’ performance.

Since relationships between differences in affective states
and physiological changes have been shown in some studies
(seee e.g., [32]), we suggest that providing the model with
information about these affective states help it in gettingrid
of the physiological variations unrelated to subjects’ workload
changes. Of course, in this exploratory work, we are asking
the model to estimate the subjects’ state at the end of a task,
giving it some information collected after this task has been
performed. Therefore, as it is, the model cannot be used as a
workload predictor. The purpose of this study was rather to
point out that, since the relationships between psychological
and physiological data is not one to one [8], it is essential to
design the modeling process so that the physiological changes
related to workload can be dissociated from the changes
related to other psychological states.



The analysis of the performance of the different models
points out that each of the five proposed physiological features
might appear in classifiers with good performance. In partic-
ular, the two best models (obtaining the best performances on
the two criteriaθ andS, with a trade-off favoring ether one
criterion or the other) do not rely on the same physiological
inputs. This suggests that each of the five features yields
information related to the workload, and that a model including
all these data would outperform the proposed classifier. Tests
on larger samples should be performed before being able to
draw conclusion on that specific point.

Also, a deeper (subject by subject) analysis of the results
should be carried out, in order to check whether some combi-
nations of specific physiological features are better for some
categories of subjects (labile versus stabile for example). Since
affects varied differently between subjects, this subjectby
subject analysis could also bring to light some relationships
between physiological and psychological data, beyond work-
load.
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