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Abstract—This paper uses Bayesian networks to investigate the minant analysis. In [11], the authors developed an Atrtificia
impact of three different kind of inputs, namely, physiologcal, Neural Network (ANN) taking electroencephalogram (EEG),
cognitive and affect feafures, on workload estimation, fre  gjacirooculographic (EOG) and respiration as inputs tessss
a computational point of view. The ability of the proposed .
models to infer the workload variation of subjects involvedin Worquad Iev_els. ECC_;' EEG a”O_' EOG were also u_s_ed in [12]
successive tasks demanding different levels of cognitivesources 0 derive an information-theoretic indicator of cognitstate.
is discussed, in term of two criteria to be jointly optimized the Support Vector Machine and ANN were applied to workload
dive_rsity, i.e. the ability of the model to perform on diffgrent estimation in [13], using EEG, SC, respiration, and head ra
subjects, and the accuracy, i.e., how close from the (subjeely  (LRy data. These models rely on physiological measurements
estimated) workload level the model prediction is. . . -

to infer cognitive states but not necessary workload sppadiyi
(for example, stress, inferred in [10], should not be coaedus
with workload thought it partly results from overload [14])

Operators involved in complex multitask activities, such Additionnally, several works, taking place in the field of
as piloting a helicopter, must constantly make quick araifective computing, have addressed the problem of infgrri
relevant decisions. Advanced systems provide them withesonmsers’ affects from physiological signals [15], [16]. Irde it
assistance, by delivering information on the task’s cdntelas been shown that humans’ emotional intelligence previde
and by automating some processes. However, these automégtechthe capacity to reason about emotions, and of emotions
agents also impose new information processing demands amanhance thinking17]. Thus, Isen et al. [18] showed that
might thus increase the level of cognitive workload (ded@te positive affect enhance problem solving and decision ngakin
workloadfrom now on)[1]. Therefore, intelligent systems, abl@herefore, affective computing aims at endowing machines
to adapt to the current level of operators’ workload might bgith emotional skills, in particular, the ability of pereg@ig
more efficient. Such systems should provide greater assistaand adapting to user’'s current affective state to improee th
in case of overload, but should delegate more functionseo téfficiency of human-machine interfaces.
operator in case of low workload (likely to result in a lack of The objective of this work was to use Bayesian networks
vigilance) [2], [3], [4]. (BN) to study the contribution of physiological, cognitiaad

Computational models have been proposed to infer cognitigéfective features on workload estimation, from a computa-
states, such as workload or distraction, from task perfamea tional point of view. We firstly collected representativetala
analyses or sensorimotor features (gaze, head movemtenys, ¢hrough a dedicated experimental protocol. Since we watated
[5], [6], [7]. However, for these features to make sensey theise non-invasive and minimally intrusive sensors, we ictett
have to be compared to nominal values that are dependenttom measurements to EMG, HR, SC and respiration and
the task context. More direct and task independent featudid not measure EEG (incompatible with helmets wore by
can be extracted from physiological measurements. Indeéd|icopter or fighter pilots for example). Entropy values of
changes in the subject’s cognitive state may result in chsinghese signals define the physiological inputs of our models.
in physiological data [8], specifically (but not exclusiyel The reaction time (RT) to a secondary task is used as a
when they are under the control of the autonomic nervous syegnitive feature [19], [3]. Finally, the positive and néga
tem (ANS). The latter is responsible for maintaining theysd affect scale (PANAS) [20], [21] was used to evaluate the
homeostasis, noticeably through the orthosympatheticdbra participants’ subjective affective state during the ekpent.
which mobilizes cardiorespiratoy and energy resources inDifferent BN structures, built from expert knowledge, are
response to the changing demands of the external and ihteteated, using in turn several combinations of these festure
milieu [9]. Thus, electrocardiogram (ECG), electromyagra Their performances are evaluated in term of two criteriago b
(EMG), skin conductivity (SC), and respiration were used ijintly optimized: the diversity (i.e., the ability of theadel to
[10] to infer the stress level by drivers using linear discribe functional for different subjects), and the accura®,(how

I. INTRODUCTION



close from the workload level the model prediction is). Th@abeledD1AQ D2A0andD3A0), the subjects were presented
ground truth is provided by subjective evaluations of wodd with three different trajectories of increasing difficul(ip1,
collected during the experiment. D2, and D3), that remained the same for the 6 trials of

Rather than assessing the ability of the BN models to infeach session. The trajectory difficulty was an independent
the workload level we focused on how good they are invariable meant to manipulate the task workload requirement
predicting theworkload variationbetween successive taskslt was varied by changing the vertical distance between two
Indeed, in the context of defining adaptive intelligent epss, successive rings, while keeping their depth distance aohst
an erroneous prediction of the workload level resulting im the last two sessions (label&@d AlandD3Al) the subjects
a false prediction of workload change (i.e., in a predictadere asked to fly again on the simplest and the hardest D1
variation opposite to reality) should be absolutely avdidé and D3 trajectories, and to try to beat their own mean scores
might drive the system to undertake actions opposite toethasver these trajectories. Moreover, a strident alarm wasteai
required by the operator’s state, with dramatic consecqggencin case of a missed ring. This challenge and the alarm were

Section Il describes the experimental protocol used iotroduced in order to maintain the subjects’ motivatiord an
collect representative data. An analysis of these datasis aimplication in the task.
performed in this section to ensure that the subjects’ veaitkl  For each of the five sessions, a secondary task was intro-
has been manipulated by the experimental paradigm. The pdoced. Two geometrical shapes (a square or a triangle) ap-
posed models are presented in sec. Il and their perfornsanpeared on the screen during 1sec, at pseudo-random pssition
are assessed in sec. IV in term of two criteria to be jointiithe ring apparition zone was avoided, and the same number
optimized: the diversity and the accuracy. of targets appeared in each of the four screen quarters) and
at pseudo-random times (no apparition while the ring was
crossed, and minimum time interval of 1.5sec between two
A. Subjects successive targets). The subjects had to press a buttoreon th

Ten subjects (9 males and 1 female, agsi4+ 10.7 joystick with the forefinger as quickly as possible in resgon
years) with normal or corrected to normal hearing and seeirtg the square target apparition. They should not react to a
participated in the experiment. triangle target.

Fig. 1 shows a typical screen shot of the simulated scene.

II. MATERIAL AND METHOD

B. Material

The subjects sat in the dark, facing a standard 24" monitor,
where graphical dynamic flying scenes generated by the home-
grown ICE software [22] were displayed. An experimenter’s
computer was used to acquire all the data synchronously,
using the Captiv Software [23]. These data were made of
the simulation data (e.g., aircraft position) sampled &HzH)
and of physiological data, acquired at a sampling rate of
2048Hz using the FlexComp Infinity sensors and encoder [24]. _ _ _ _
The subjects bore stereo headphones, so that they could [i&af: Screen shot of a typical flying scene created by ICE. fBiio of hit

. . . . rings over the total number of rings in the trajectory appdaon the cockpit
pre-recorded instructions (the instructions’ tone andt@un gashboard (e.g. 1/60) and a green or red light indicatedhehebe last ring
were then strictly identical for each subject) and the taslad been hit or missed.
related noises such as the engine noise (leading to a greater
immersion) or the possible alarms.

>
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D. Dependent variables

C. Procedure Performance on the primary (percentage of hit rings) and on

Using a regular joystick, subjects were asked to pilot a flyirthe secondary tasks (false and good detection rates; RE) wer
aircraft and to do their best to follow a trajectory defined bfecorded. The physiological variables comprised the fatig
60 rings, alternatively red and yellow. The trajectoriesiag Mmeasurements:
only along the vertical dimension. The aircraft's speed wase HR, estimated from the ECG by the Captiv software,
maintained constant at the same predefined value for all the using R-R intervals;
trajectories. The ratio of hit rings over the total numberings « Root mean squares of the flexor digitorum EMG (RMS1)
in the trajectory appeared on the cockpit dashboard. Thase w  and of the right trapezius descendens EMG (RMS2);
also a green or red light indicating whether the last ring hade Respiration (R), measured through chest expansion;
been hit or missed. o SC, measured using electrodes placed on the first and
The experiment was organized in 5 sessions of 6 trials. Each little fingers of the left hand (temperature in the room
trial lasted approximately 90skcln the first three sessions equal t019.33 £ 0.98°C).

s ) o ) .. Finally, psychological data were also collected at the ehd o
Though the speed is maintained constant, the duration df @@ is h . Th bi If d thei workl
not necessary the same, since the aircraft's trajectorybeamore or less eac_ session. € subjects S_e -assessed their own rkioa
sinusoidal during the performed task, using the NASA Task Load Index



(TLX) scale [25]. The NASA TLX asks the subjects to rate I1l. M ODEL
their perceived workload on six different subscales. At thE
end of the experiment, these six components are matched two
by two and the subjects have to choose for each couple whicH data-driven approach to modeling problem requires first
component best described the workload in the performed tafk assign some data with the correct class labels so that
Each component score can thus be weighted accordingly to the relationship between the input features (derived frben t
number of times it has been chosen in the matching phaBBYsiological data in the present case) and the classes (the
In the present experiment, the NASA TLX rates on the siodel’s output) can be automatically discovered and etetthc
subscales are weighted and summed for each sessions to réduihe learning phase. As stated in sec. II-E, we can only
in a singleWorkload Index (WI)(normalized on[0, 1]) per rely on a subjective rating scale to label our ground truth.
session. The subjects also filled the PANAS [20], [21] beforehis adds some noise in the pattern recognition process. To
the experimentation and after each session. This instruméfuce the noise in the process as much as possible, the input
was used to provide information on participants’ affectivieatures have also to be optimized: the more representagve
reactions to the experiment. It comprised two affects’ escalfeatures, the simpler the task for the classifier, thus theebe
positive (interested, excited, etc.), and negative (elisied, its expected performance [26].

scared, etc.). The 20 items of this instrument were rated on Ve expect (and we visually observed) changes in the
five point Likert scale from: (1) = “very slightly or not at &ll Vvariability or stability of the physiological signals witthanges

to (5) = “Extremely”. The ratings for each participant werdn the subjects’ cognitive states. Indeed, the physiokigic
normalized between 0 and 1, and the positive affect scordgnals we recorded are mainly under the control of the ANS,
(PA) reversed [ — PA) for all the scores to be interpretablevhich regulates the body’s homeostasis through successive
in a consistent way. These normalized negative and reverg&dvations of the sympathetic and parasympathetic system
positive scores were then summed and normalizedoot], (resulting in mobilization or slowing down of the organism)

resulting in theAffect Index (Alused in the following of the [27]. These changes can be captured by the Shannon’s entropy
paper. of the physiological data, which will be the input for our

model. To the best of our knowledge, such features have never
been used in this context. The entropy of the random variable
(rv) X is a measure of the average uncertaintyXin[28].

The impact of the primary task difficulty on performancétated in a different and simpler way, it is a measure of
in both the primary and secondary tasks is assessed throdgiorder. Before the entropies to be estimated, the noise in
analysis of variance (ANOVA) statistical tests. There is nde raw signals is firstly smoothed using a low-pass median
significant difference between trials for a same level of difilter. The first and last seconds of each trial's signal ase al
ficulty (p=0.13) whereas the difference is significant betwe removed to avoid possible starting and ending effects. Then
sessions (F(4,36)=26.708, p=0.000). A post-hoc analfis ( the data are normalized between 0 and 1, taking the minimal
dent Neuwman-Keuls) indicates that scores are statisticaind maximal values observed on the first three sessions (used
different for the different difficulty levelsy{ < 0.001). The as training sessions). Entropies are estimated on 15sec lon
difficulty level also impacts the RT on the secondary taskindows slided by 5sec along the signals, using an histogram
(F(4,24)=14.084; p=0.0000) whereas there is no intraisessof 41 bins that ranges off), 1]. Therefore, there is about
effect (p=0.03). Finally, the TLX scores also increase wiifh 90 values per sessions and per subject. Entropy values are
ficulty’s session: differences are significant betweenisass also normalized between 0 and 1 by taking the maximal and
(F(4,26)=12.284, p=0.000). This statistical analysislglsthes minimal values over the first three sessions for each subject
that subjects experienced different levels of workloadirur It can be observed that the variation of the mean entropy
the task. This should be reflected in the physiological dath afeatures is consistent with the variation of the perfornganc
be captured by the model. on the primary task, the RT and the WI (see Fig. 2 showing

The analysis of the Al shows that variations of affectdfie subject 4's features as an illustrative example). Hewev
during the experiments are quite different from one subje#e observed the variation of the physiological data to be
to the others. Generally speaking, the variations are sihall idiosyncratic: e.g., the mean entropy values of SC might
maximal variation over all sessions is observed for sulffectdecrease for some subjects or increse for some others (as
and is equal td5%. Some subjects (noticeably, the subject Fpr the subject 4) with the difficulty level. As a results, the
expressed negative affects prior to the task. For some agbjemodels will be individual (trained and tested on each subjec
the negative affects tend to decrease with the task difficulseparately).
whereas it is the opposite for others. Finally, this analyk e
not point out any striking consistency between affect wames 5 Model definition
and difficuly or workload (ass assessed by WI) variations (se BN are defined to infer the subject's WI on each session,
e.g., subject 4, on Fig. 2). Therefore, it is not sure thairegld from different kind of features. Firstly, we examine the eep
knowledge about the subjects’ affects to the model migbf the number and type of the physiological inputs on the
improve its ability to infer workload. model performance. To this end, different classifiers sstetk

Selection of output and input features

E. Analysis of experimental data



. HSC) sublects ; H(R) subjects 1, HEMST) subjects for the physiological rv, 20 bins of width 0.05 for WI and
Al, and 16 bins of widthexp(®-?), with the first bin centered
0 0s 05 on exp(~37 and the last bin taking all the values greater
) . than exp(~%9 for RT. For each subject, the training set is
S FFF FF made of the data collected on the first three sessidhao0,

H(HR) subjects Mean score (primary tasi) D2A0 and D3AQ0 The testing set is made of the two last
sessionsD1A1 and D3AL1 Both the learning and inference
05 05 8 stages have been implemented using the Bayes Net Toolbox
7 for Matlab [29]. Because there are some missing data (HR
PP F S 0 LS F S 6 LSS in particular could not be reliably recorded sometimes, and
oan AT (ssconday ask Workioad indox Afoct o there is not necessary one .RT value_ per measurement wmdow),

! ! the Expectation Maximization algorithm has been used with a

stopping criterion of 10 iterations).

H(RMS2) subjects

C. Assessing the model performances
RS

S The performance of the models is assessed by looking at
Hsiol e es ( ( thgnals the differences in the WI betwedd1 Al and D3A1 sessions.

Fig. 2. Mean physiological feature values (entropy H of thgnals), : ;

performance on the primary task, reaction times (RT), vwaa#tl and affect The _mOdel output will be qeemed as correct if the _obs_erved

index for each session performed by subject 4. and inferred WI are evolving the same way, that is, if the

performance indey, defined as follow, is positive:

0 0
S O O AN A S O O N &N S O O O
SR SRS SRR IR
Y PSP Y PP ARRSY

_ . o (AT «
each taking one, two or three of the possible physiological p = sign(A)-sign(A )-|K|, if A*<A (1)
features SC, R, HR, RMS1 and RM&52s inputs. As a result, _ _ A
25 classifiers with different physiological nodes as direct = signA) -sign(A®) - ||, else 2

parents of th_e WI node (s_tructure 1) are trained ".".”d teSted\NhereA is the difference between the subjects’ WI on sessions
Then, the impact of adding to the model a cognitive featura,

namely, the RT, is evaluated. Whereas in BN with structure SAlandD3AL andA” the difference between the predicted

WI node was a direct child of the physiological nodes, it is | on thesc_a two SEssIons. The quality of the model perfor
. A ) mance is given by the distance to 1 (the closer, the better).
now a child of the RT node, which is itself a child of the, . ; i . .
: . . . A fine analysis of the model's false detections is useless
physiological nodes. This defines the structure 2.

Finally, we wanted to assess how the affective state of tl%lnce we want this false detection rate to be null. Indeed, as

. . . . s?ated in sec. |, a false estimation of the workload vanmmatio
subject could impact the physiological data, and so, the IOrt()eetween successive tasks can not be accepted: it would lead
diction of the WI score. Therefore, the Al is also introduesd pted.

. . . . the assistance system to undertake unadapted measurels, whi
a possible parent of the physiological nodes in both strestu : i
could have worse consequences than doing nothing.

The different model structures are presented on Fig. 3 for h model looki h ‘

classifier made of two physiological nodés and . or each mode’, we are looking at the periormance over
the subject set. Thus, we want the maximum number of
subjects to be correctly detected, withpascore as close as
possible to 1. This is a two-variable optimization problem,
where the first parameter to be optimized is the model ditjersi

@ @ @ @ and the second, its accuracy. The model diversity is assesse
by looking at the percentage of subjects correctly detected
@ e @ (S). Also, to allow for comparisons between the accuracy

performanced), the normalized area under theurve, plotted

Structure 1 Structure 2 as a decreasing function 6f, is used rather thap:
Fig. 3. Bayesian Network models inferring the WI value fromot Zp
physiological featuresb; and ®2 either directly (Structure 1) or via RT ¢ =10- g AS [07 1]- 3)

(Structure 2). The models are tested with or without a Al nadeparent of
the @ nodes (thus, this link is dashed on the graph). There canbaissither IV. RESULTS
asingle or three physiological nodes. From Fig. 4, it can be seen that most of the models are per-

. - . . . formant in either one of the twdiversity (S) or accuracy(f
The joint probability density functions (pdf) described by, ..o - However, we are interested irilgthzz models peﬁo?tma

the BN are estimated on the training set using histograms . . . . -
: . . in"both dimensions simultaneously. Depending on the doiter
with the following parameters (rv take on values [in 1],

. ) ) ; . that is retained, the best model will be different. Table |
but RT, taking on values ifj0, +oo): 5 bins of width 0.2 presents the models that perform best on both the accuracy

2For simplification purposes, the rv denoting the entropyuiess are named and d'V_erS!ty criteria, using a trade'_Oﬁ faVOU””Q almmely
as the acronyms of the corresponding physiological data each criterion. The trade-off is obtained by looking at tlestb
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Fig. 4. Performance of the models in terms of diversify fcore) and
accuracy @ score). The best models lie in the upper right-hand sideteuar

of the graph. Fig. 5. Percentage of good models (with performance gretatm 50%
for both accuracy and diversity criteria) for the differgttysiological node
TABLE | numbers (no distinction is made between the two possible Biktsrres).

BEST MODELS IN TERM OF A TRADEOFF PERFORMANCE BETWEEN Models with or without the Al node are compared.

DIVERSITY AND ACCURACY, FAVOURING EACH OF THESE TWO CRITERIA
ALTERNATIVELY

o
&

No PANAS|

Best# score with aS score of at leass0% B el
Performance| Structure| Physiological S [4 Al 8
criterion nodes node i
Maximal 1 SC;R;RMS1 60 0.72 | Yes 215
Accuracy 6 ’g‘: 10-

Best S score with ad score of at leass0% @ .
Performance| Structure | Physiological S 0 Al |.|
criterion nodes node 0 ¥
Maximal 2 HR;RMS2;RMST 70 0.65 | Yes Strueture numoer
Diversity S

Fig. 6. Percentage of good models (with performance grettam 50%

for both accuracy and diversity criteria) for the differesttuctures (whatever
the number of physiological node). Models with or withou¢ tAl node are

compared.

model in term of accuracy (respectively, diversity) in thbset

of models that obtain a score of at least 50% on the diversity

(respectively, accuracy) criterion. to be jointly optimized: the accuracy and the diversity o th
To analyze the impact of the number of physiological inputg|assifier.

of RT and of Al on the models’ performance, we will look &t The most striking result of this study is to put forward

the set of best models, that is, the models with a performangs, taking into account subjects’ affective state increase
greater than 50% for both diversity and accuracy criterjgerformance on workload estimation. Indeed, increasireg th
(Figs. 5 and 6). Notice that these are the models lying in themper of physiological inputs, and adding cognitive infiar
upper right hand side quarter of Fig. 4. _ tion (RT) in the model increase the number of “good models”
_Itis obvious from Figs. 5 and 6 that adding the Al nodgmodels with a performance greater than 50% on both the
(i.e. information about the subjects’ affect!ve statespriaves accuracy and diversity criteria), as could be expected from
performance the most. Thus, when there is a Al n@Q0&; of |iterature (see e.g. [30], [31]). But coupling these coindis

the models fit the “good model” criterion with two physiologyith some knowledge about the subjects’ affects (through th
ical nodes only, and this number reach6s; in case of three ;e of features derived from the PANAS questionnaire osjput
physiological nqdes. Without the Al node, three physiotad)i outstandingly improves models’ performance.

nodes are required to get some good modelsi(only) and  gjnce relationships between differences in affectiveestat

observation of the Fig. 6 shows that these models also eontgj, physiological changes have been shown in some studies

the RT node (structure 2) since there are no good model Wt@bee e.g., [32]), we suggest that providing the model with

structure 1 and without Al. When structure 2 is used (Whateve:o - ation about these affective states help it in gettiing

the number of physiological nodes) and a Al node includegy ¢ physiological variations unrelated to subjects’ kioad
the percentage of good models reachg. changes. Of course, in this exploratory work, we are asking
the model to estimate the subjects’ state at the end of a task,
giving it some information collected after this task hasrbee
In this paper, BN are proposed to infer the variation gferformed. Therefore, as it is, the model cannot be used as a
workload for operators involved in multitask activitiespfn workload predictor. The purpose of this study was rather to
physiological, cognitive, and affective features. Themaiy point out that, since the relationships between psychoébgi
objective is to examine, from a computational point of viewand physiological data is not one to one [8], it is essential t
the impact of these different types of information on woddo design the modeling process so that the physiological adsng
estimation. Therefore, two BN structures with differentmu related to workload can be dissociated from the changes
ber of inputs are tested and compared in term of two critenielated to other psychological states.

V. DISCUSSION AND CONCLUSION



The analysis of the performance of the different modejsi]
points out that each of the five proposed physiological festu
might appear in classifiers with good performance. In partiﬁz]
ular, the two best models (obtaining the best performannes o
the two criteriad and S, with a trade-off favoring ether one
criterion or the other) do not rely on the same physiologicgly
inputs. This suggests that each of the five features yields
information related to the workload, and that a model intigd
all these data would outperform the proposed cIassifiertsTeElA']
on larger samples should be performed before being able[1s)
draw conclusion on that specific point.

Also, a deeper (subject by subject) analysis of the resufig,
should be carried out, in order to check whether some combi-
nations of specific physiological features are better fanaso
categories of subjects (labile versus stabile for examfliece
affects varied differently between subjects, this subjegt
subject analysis could also bring to light some relatiopshi g]
between physiological and psychological data, beyond worIl%
load.
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