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Abstract— This paper presents an approach based on
Bayesian Networks to estimate the workload of operators. The
models take as inputs the entropy of different number of
physiological features, as well as a cognitive feature (reaction
time to a secondary task). They output the workload variation
of subjects involved in successive tasks demanding different
levels of cognitive resources. The performances of the classifiers
are discussed in term of two criteria to be jointly optimized: the
diversity, i.e. the ability of the model to perform on different
subjects, and the accuracy, i.e., how close from the (subjectively
estimated) workload level the model prediction is.

I. I NTRODUCTION

The ability to manage cognitive workload (denoted simply
by workloadfrom now on) during multitask activity is crucial
for operators involved in driving complex engine such as
car or aircraft. Intelligent systems can assist the operator in
such situations, but for this assistance to be really efficient,
it should be adapted to the current operator’s workload.
For example, task demand should be decreased in case of
overload, whereas more functions should be delegated to the
operator in case of low workload (likely to result in a lack of
vigilance) [1], [2]. Being able to characterize the operator’s
workload is therefore a prerequisite to adaptive intelligent
system.

Computational models have been proposed to infer some
cognitive states, such as workload or distraction, from task
performance analyses or sensorimotor features (gaze, head
movements, etc.) [3], [4], [5]. However, for these features
to make sense, they have to be compared to nominal values
that are dependent on the task context.

More direct and task independent features can be ex-
tracted from physiological measurements. Indeed, changes
in the subject’s cognitive state may drive to changes in
physiological data [6], specifically (but not exclusively)
when they are under the control of the autonomic ner-
vous system. The latter is responsible for maintaining the
body’s homeostasis, noticeably through the orthosympathetic
branch which mobilizes energy resources in response to the
changing demands of the external and internal milieu [7].
Thus, electrocardiogram (ECG), electromyogram (EMG),
skin conductance (SC), and respiration were used in [8] to
infer the stress level by drivers using linear discriminant
analysis. In [9], the authors developed an Artificial Neural
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Network (ANN) taking electroencephalogram (EEG), elec-
trooculographic (EOG) and respiration as inputs to assess
workload levels. ECG, EEG and EOG were also used in
[10] to derive an information-theoretic indicator of cognitive
state. Support Vector Machine and ANN were applied to
workload estimation in [11], using EEG, SC, respiration,
and hear rate (HR) data. Notice that these models rely on
physiological measurements to infer cognitive states but not
necessary workload specifically (for example, stress, inferred
in [8], should not be confused with workload thought it partly
results from overload [12]).

In this work, our objective was to develop a task in-
dependent model, able to infer workload from objective
measurements. We wanted to use non-intrusive and mini-
mally invasive sensors, therefore, we did not measure EEG
(incompatible with helmets wore by helicopter or fighter
pilots for example) but restricted the measurements to EMG,
ECG, SC and respiration. The reaction time (RT) to a
secondary task was also used as a cognitive measure of
workload [13], [1].

We propose Bayesian Network (BN) models that take
as inputs the entropy of these physiological measurements
and output the change of the subject’s workload while they
are involved in task demanding different levels of cognitive
resources. Entropy of ECG signal has been shown to be a
good indicator of distraction [14] but, to the best of our
knowledge, it has never been applied to other physiological
signals in a computational model of workload.

Different BN structures, built from expert knowledge, are
tested, using in turn several combinations of physiological
features. Their performances are evaluated in term of two
criteria to be jointly optimized: the diversity, i.e. the ability
of the model to be functional for different subjects, and the
accuracy, i.e. how close from the workload level the model
prediction is. The ground truth is provided by subjective
evaluations of workload collected during the experiment.

Rather than assessing the ability of the BN models to
infer the workload level, we focused on how good they
are in predicting theworkload changebetween successive
tasks. Indeed, in the context of defining adaptive intelligent
systems, an erroneous prediction of the workload level that
results in a false prediction in term of workload change (i.e.
in a predicted variation opposite to the reality) should be
absolutely avoided. It might drive the system to undertake
actions opposite to those required by the operator’s state,
and have dramatic consequences.

The experimental protocol used to collect representative
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data and an analysis of these data are presented in sec. II.
Sec. III describes the proposed models, whose performances
are assessed in sec. IV in term of two criteria to be jointly
optimized: the diversity and the accuracy.

II. M ATERIAL AND METHOD

A. Subjects

Ten subjects (9 males and 1 female, aged30±10.7 years)
with normal or corrected to normal hearing and seeing, have
participated to the experiment.

B. Material

The subjects sit in the dark, using a non-force feedback
joystick and facing a standard 24” monitor, where the
graphical dynamic flying scenes generated by the home-
grown ICE software [15] were displayed. An experimenter’s
computer was used to acquire all the data synchronously,
using the Captiv Software [16]. These data were made of the
simulation data (e.g., aircraft position) sampled at 100Hz,
and of physiological data, acquired at a sampling rate of
2048Hz using the FlexComp Infinity sensors and encoder
[17]. The subjects bore stereo headphones, so that they could
hear the pre-recorded instructions (the instructions’ tone and
content were then strictly identical for each subject) and the
task related noises such as the engine noise (leading to a
greater immersion) or the possible alarms.

C. Procedure

The subjects were asked to pilot a flying aircraft and to
do their best to follow a trajectory made of 60 rings, alter-
natively red and yellow. The trajectories varied only along
the vertical dimension. The aircraft’s speed was maintained
constant at the same predefined value for all the trajectories.
The ratio of hit rings over the total number of rings in the
trajectory appeared on the cockpit dashboard. There was also
a green or red light indicating whether the last ring had been
hit or missed.

The experiment was organized in 5 sessions of 6 trials.
Each trial lasted approximately 90sec1. In the three first
sessions (labeledD1A0, D2A0 and D3A0), the subjects
were presented with three different trajectories of increasing
difficulty (D1, D2, and D3). The trajectories remained the
same for the 6 trials of each session. The trajectory difficulty
was an independent variable meant to manipulate the task
workload requirement. It was varied by changing the vertical
distance between two successive rings, while keeping their
depth distance constant. In the two last sessions (labeled
D1A1 and D3A1) the subjects were asked to fly again on
the simplest and the hardest D1 and D3 trajectories, and to
try to beat their own mean scores over these trajectories.
Moreover, a strident alarm was emitted in case of a missed
ring. This challenge and the alarm were introduced in order
to maintain the subjects’ motivation and implication in the
task.

1Though the speed is maintained constant, the duration of eachtrial is
not necessary the same, since the aircraft’s trajectory can be more or less
sinusoidal.

For each of the five sessions, a secondary task was also
required from the subjects. Two geometrical shapes (a square
or a triangle) appeared on the screen during 1sec, at pseudo-
random positions (the ring apparition zone was avoided, and
the same number of targets appeared in each of the four
screen quarters) and at pseudo-random times (no apparition
while the ring was crossed, and minimum time interval of
1.5sec between two successive targets). The subjects had to
press a button on the joystick with the forefinger as quickly
as possible in response to the square target apparition. They
should not react to a triangle target.

Fig. 1 shows a typical screen shot of the simulated scene.

Fig. 1. Screen shot of a typical flying scene created by ICE. The ratio of
hit rings over the total number of rings in the trajectory appeared on the
cockpit dashboard (e.g. 1/60) and a green or red light indicated whether the
last ring had been hit or missed.

D. Dependent variables

Performance on the primary (percentage of hit rings) and
on the secondary (false and good detection rates; reaction
times (RT)) tasks was recorded. The physiological variables
comprised the following measurements:

• Hear Rate (HR) estimated from the ECG by the Captiv
software, using the R-R intervals;

• Root mean squares of the flexor digitorum EMG
(RMS1) and of the right trapezius descendens EMG
(RMS2);

• Respiration (R), measured through chest expansion;
• Skin Conductance (SC), measured using electrodes

placed on the first and little fingers of the left hand
(temperature in the room equal to19.33± 0.98◦C).

Finally, psychological data were also collected at the end
of each session. The subjects evaluated their own workload
during the performed task, using the NASA Task Load Index
(TLX) scale [18]. The NASA TLX asks the subjects to rate
their perceived workload on six different subscales (Men-
tal Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort, and Frustration). At the end of the experiment,
these six components are matched two by two and the
subjects have to choose for each couple which component
best described the workload in the performed task. Each
component score can thus be weighted accordingly to the
number of times it has been chosen in the matching phase.
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In the present experiment, the NASA TLX rates on the six
subscales are weighted and summed for each sessions to
result in a single TLX score per session.

E. Analysis of the experimental data

Prior to build a model that will take the collected data as
input, it has to be checked that these data are representative
of the problem at hand. That is, we have to ensure that
the workload has been effectively manipulated using our
experimental paradigm, so that variations observed in the
physiological signals can effectively correspond to variations
of workload.

The impact of the primary task difficulty on the per-
formance in both the primary and secondary tasks is as-
sessed through Analysis of Variance (ANOVA) statistical
tests. There is no significant difference between trials fora
same difficulty (p=0.13) whereas the difference is significant
between sessions (F(4,36)=26.708, p=0.000). A post-hoc
analysis (Student Neuwman-Keuls) indicates that scores on
all sessions are statistically different (p < 0.001) but for the
sessions of the same difficulty levels (D1A0andD1A1, D3A0
and D3A1). The difficulty also impacts the true positive
(TP) detection rate of the secondary task (F(4,36)=8.84,
p < 0.01), though the statistical difference only holds for D3
in the Student Neuwman-Keuls post-hoc analysis. Finally,
the reaction times associated to these TP detections also
differ significantly between the different difficulty levels
(F(4,24)=14.084; p=0.0000) (but not between each session’s
trials (p=0.03)).

This statistical analysis establishes firstly that subjects
behave with a coherent resource allocation strategy inside
a given session. Secondly, as it is well-known that sec-
ondary task competes for the limited brain resources with
the primary task (see e.g. [13], [1]), it indicates that the
cognitive resources allocated by each subject on the primary
task have increased at the expense of the secondary task.
Nevertheless, these results do not insure that the overall level
of involved resources has been increased: subjects might have
been only partially committed in the task and have simply
changed the resource allocation strategy as the primary task
difficulty increased. Investigation of the subjective data(TLX
scores) can give us some clues about this point. Generally
speaking, the TLX scores increase with the session difficulty.
An ANOVA on the TLX scores shows a significant difference
between sessions (F(4,26)=12.284, p=0.000).

Table I summarizes the correlation values found for each
subject between the TLX scores and the RT, per session. In
most cases, the correlation is greater than 0.5. which indi-
cates that the subjective evaluation of workload is consistent
with the objective measure (RT) and that subjects committed
in the task. Values below 0.5 are not necessarily due to a
mismatch between subjective and objective metrics: some
subjects experiencing high workload totally gave up on the
secondary task, so that RT were not available2 (thus, the
relation with TLX scores is not linear anymore).

2In that case, an arbitrary mean RT value of 1.5sec has been usedin the
correlation computation.

TABLE I

CORRELATION BETWEEN THETLX SCORES AND THERT OVER THE 5

SESSIONS, FOR EACH SUBJECT

Subject
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

r
0.67 0.79 0.83 0.80 0.68 0.48 0.32 0.75 0.90 0.45

Finally, this analysis establishes that subjects experienced
different levels of workload during the task. This should be
reflected in the physiological data and be captured by the
model.

III. M ODEL

A. Selection of output and input features

A data driven approach to modeling problem requires
to prealably assign some data with the correct class labels
so that the relationship between the input features (derived
from the physiological data in the present case) and the
classes (the model’s output) can be automatically discovered
and extracted in the learning phase. As stated in sec. II-E,
we can only rely on a subjective rating scale to label our
ground truth. This adds some noise in the pattern recognition
process. To reduce the noise in the process as much as
possible, the input features have also to be optimized: the
more representative the features, the simpler the task for the
classifier, thus the better its expected performance [19].

We have decided to use the Shannon’s entropies of the
physiological data as inputs for our model. The entropy
of a random variable (rv)X is a measure of the average
uncertainty inX [20]. Stated in a different and simpler
way, it is a measure of disorder. As such, it is likely to
capture differences in physiological data related to workload
variations.

Before the entropies to be estimated, the noise in the raw
signals is firstly smoothed using a low-pass median filter. The
first and last seconds of each trial’s signal are also removed
to avoid possible starting and ending effects. Then, the data
are normalized between 0 and 1, taking the minimal and
maximal values observed on the three first sessions (used
as training sessions). Entropies are estimated on 15sec long
windows slided by 5sec along the signals, using an histogram
of 41 bins that ranges on[0, 1]. Therefore, there is about
90 values per sessions and per subject. Entropy values are
also normalized between 0 and 1 by taking the maximal and
minimal values over the three first sessions for each subject.

It can be observed that the variation of the mean entropy
features is consistent with the variation of the performance
on the primary task, the RT and the TLX scores (see Fig. 2
showing the subject 4’s features as an illustrative example).
However, we observed the variation of the physiological data
to be idiosyncratic: for some subjects, the mean entropy val-
ues of some physiological data might decrease with difficulty
levels, whereas they decrease for other subjects. As a results,
the models will be individual (trained and tested on each
subject separately).
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Fig. 2. Mean physiological feature values (entropy values of the physiolog-
ical signals, in bit), performance on the primary task (in %), reaction times
(RT, in sec) and NASA Task Load Index (TLX) scores for each session
performed by subject 4.

B. Model definition

The model aims at inferring the subject’s TLX score on
each session, from the physiological features SC, R, HR,
RMS1 and RMS23. To this end, different BN classifiers
are tested, each taking one, two or three of the possible
physiological features as inputs. As a result, 25 classifiers
with different physiological nodes are trained and tested.
Moreover, three BN structures are tested. Structure 1 is a
naive BN were the TLX is a direct child of the physiological
nodes. Structure 2 is also a naive BN but TLX is now a child
of the RT, which is itself a child of the physiological nodes.
Structure 3 has a more complex structure, where TLX is
a direct child of both the physiological nodes and of RT.
The different structures are presented on Fig. 3 for a 2-node
classifier made of physiological featuresΦ1 andΦ2.

Structure 1 Structure 2 Structure 3

Fig. 3. BN models inferring the TLX scores from physiologicalfeatures
Φ1 andΦ2 either directly (Structure 1), via RT (Structure 2), or fromboth
RT and the physiological inputs (Structure 3). There can also be 1 or 3
physiological nodes.

The joint probability density functions (pdf) described by
the BN are estimated on the training set using histograms
with the following parameters (rv take on values in[0, 1],
but RT taking on values in[0,+∞[): 5 bins of width 0.2
for the physiological rv, 20 bins of width 0.05 for TLX,
and 16 bins of widthexp(0.2), with the first bin centered on

3For simplification purposes, the rv denoting the entropy features are
named as the acronyms of the corresponding physiological data.

exp(−3.7) and the last bin taking all the values greater than
exp(−0.9) for RT. For each subject, the training set is made
of the data collected on the three first sessionsD1A0, D2A0
and D3A0. The testing set is made of the two last sessions
D1A1andD3A1. Both the learning and inference stages have
been implemented using the Bayes Net Toolbox for Matlab
[21]. Because there are some missing data (HR in particular
could not be reliably recorded sometimes, and there is not
necessary one RT value per measurement window), the
Expectation Maximization algorithm has been used (with a
stopping criterion of 10 iterations).

C. Assessing the model performance

The performance of the models is assessed by looking at
the differences in the TLX scores between theD1A1and the
D3A1 sessions. The model output will be deemed as correct
if the observed and inferred TLX scores are evolving the
same way, that is, if the performance indexρ, defined as
follow, is positive:

ρ = sign(∆) · sign(∆∗) · |
∆∗

∆
|, if ∆∗ < ∆ (1)

= sign(∆) · sign(∆∗) · |
∆

∆∗
|, else, (2)

where∆ is the difference between the subjects’ TLX scores
on sessionsD3A1andD3A1, and∆∗ the difference between
the predicted TLX scores on these two sessions. The quality
of the model performance is given by the distance to 1
(the closer, the better). A fine analysis of the false model’s
detections is useless since we want this false detection rate
to be null. Indeed, as stated in sec. I, a false estimation of
the workload variation between successive tasks can not be
accepted: it would lead the assistance system to undertake
unadapted measures, which could have worse consequences
than doing nothing.

For each model, we are looking at the performance over
the subject set. Thus, we want the maximum number of
subjects to be correctly detected, with aρ score as close as
possible to 1. This is a two-variable optimization problem,
where the first parameter to be optimized is the model
diversity and the second, its accuracy. The model diversityis
assessed by looking at the percentage of subjects correctly
detected (S). Also, to allow for comparisons between the
accuracy performance,θ, the normalized area under theρ
curve, plotted as a decreasing function ofS, is used rather
thanρ:

θ = 10 ·

∑
ρ

S
, θ ∈ [0, 1]. (3)

IV. RESULTS

From the Fig. 4, it can be observed that most of the models
are performant in either one of the twodiversity (S) or
accuracy(θ) criteria. Table II presents the best classifiers in
term of a single performance criterion solely. However, we
are interested in classifiers performant in both dimensions
simultaneously. The model that gives the best performance
in term of both accuracy and diversity, namely,S = 60%
and θ = 0.66, is the three physiological node classifier
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TABLE II

BEST PERFORMANCE IN TERMS OF ACCURACY AND DIVERSITY

INDEPENDENTLY

Performance
criterion

Structure
Physiological
nodes

S θ

Maximal
Accuracy

1 SC 20 0.89

Maximal
Diversity

2 HR and SC 80 0.47

HR;RMS2;SC with the structure 2. Its performance is
plotted as a function of its diversity in Fig. 5.

Fig. 4. Performance of the models in terms of diversity (S) and accuracy
(θ), depending on the number of nodes (top) or on the structure (bottom)
of the models. The best models lie in the upper right-hand side quarter of
the graphes.

To analyse the impact of the number of nodes and of the
structure on models’ performance, let us look at the best
models, i.e., the models with a performance greater than
50% over the sets for both diversity and accuracy criteria
(these are the classifiers lying in the upper right hand side
quarter of Fig. 4). Indeed, the mean performance over the
model sets do not tell us whether good models for one
criterion are also good models for the other. The results are
presented on Fig. 6. Generally speaking, the percentage of
models fulfilling the required “best performance” criterion is
not high (less than 15%). It is null for the models with the
simplest structure (structure 1), but it increases as soon as
RT is added to the model (structures 2 and 3), with the best
performance being obtained with structure 3 (12%). When
comparing the models on the basis of their node number
(whatever the structure), the use of two nodes leads to the

Fig. 5. Performance of the best classifier (HR;RMS2;SC with the
structure 2).

smallest percentage of good classifiers (thought the best
results are obtained with a 2-node classifier), whereas the
largest number of good classifiers are obtained when using
three nodes.

Notice that each of the five physiological features appears
in one of these good classifiers. This certainly indicates that
none of these features is specific enough of the workload
change. We can do the hypothesis that a classifier with five
physiological nodes would outperform the performance of
the classifier proposed in this work. However, since we are
training subject-dependent models, our sample sizes were too
small to deal with a classifier with 5 physiological nodes, so
that we were not able to check this hypothesis in this study.

Fig. 6. Percentage of good models (with performance greater than 50%
for both accuracy and diversity criteria) for the differentstructures and the
different physiological node numbers.

V. CONCLUSIONS AND FUTURE WORK

In this paper, Bayesian networks are proposed to infer the
variation of the workload for operators involved in multitask
activities, from physiological and cognitive (RT) measure-
ments. The advantage of physiological measurements is that
their interpretation if more independent from a specific ope-
rator task than sensorimotor features for example. Entropy
based features are firstly derived from the raw measurements
so that the models receive inputs more specific from the
studied phenomenon. Different structures and number of
inputs are tested and compared in term of two criteria to
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be jointly optimized: the accuracy and the diversity of the
classifier.

The best model is the three physiological node classifier
HR;RMS2;SC with the structure 2 (workload inferred
from the physiological nodes, via the RT). However, a finer
analysis of the model performances points out that each
of the five proposed physiological features might appear in
classifiers with good performance. Also, the performances in-
crease with the number of physiological inputs in the model.
This suggests that each of the five features yields information
related to the workload, and that a model including all these
information would outperform the proposed classifier. Tests
on larger samples should be performed for being able to draw
conclusion on that specific point.

Though the structure of the best model is the structure 2,
the relative number of good classifiers is more important
with the third tested structure (where the workload rv is
a child of both the physiological nodes and of the RT).
This indicates that physiological and cognitive features carry
complementary information about the subject’s cognitive
state, extracted and used by the models. Including the RT in
the model yields better workload prediction, at the expense
of a slightly more task-dependent method, since it requires
a secondary task to be performed. However, there are a lot
of situations where routine tasks can be used to infer RT
values.

These are only preliminary results and refinements should
be brought to the models, as well as tests on larger sample
sizes (which should result in improved models’ perfor-
mance). It should be checked whether the best classifier
HR;RMS2;SC, which shows a good diversity perfor-
mance, remains performant when tested on new subjects.
It is also possible that some combinations of specific phys-
iological features are better for some categories of subjects
(labile versus stabile for example). This could be checked
by a deeper (subject by subject) analysis of the models’
performance.
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