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Bayesian Network classifiers inferring workload from physiologcal
features: compared performance

P. Besson, E. Dousset, C. Bourdin, L. Bringoux,
T. Marqueste, D. R. Mestre, J. L. Vercher

Abstract— This paper presents an approach based on Network (ANN) taking electroencephalogram (EEG), elec-
Bayesian Networks to estimate the workload of operators. The trooculographic (EOG) and respiration as inputs to assess
models take as inputs the entropy of different number of workload levels. ECG. EEG and EOG were also used in

physiological features, as well as a cognitive feature (reaction - . . . L
time to a secondary task). They output the workload variation [10] to derive an information-theoretic indicator of cogve

of subjects involved in successive tasks demanding different State. Support Vector Machine and ANN were applied to
levels of cognitive resources. The performances of the classifier workload estimation in [11], using EEG, SC, respiration,

are discussed in term of two criteria to be jointly optimized: the  and hear rate (HR) data. Notice that these models rely on
diversity, i.e. the ability of the model to perform on different  ,pgin|ogical measurements to infer cognitive states bt n
subjects, and the accuracy, i.e., how close from the (subjegtly kload ifically (f le. st itk
estimated) workload level the model prediction is. necessary workload specinca y_( or example, s ressr"e
in [8], should not be confused with workload thought it partl
. INTRODUCTION results from overload [12]).

The ability to manage cognitive workload (denoted simply M this work, our objective was to develop a task in-
by workloadfrom now on) during multitask activity is crucial dePendent model, able to infer workload from objective
for operators involved in driving complex engine such a§'éasurements. We wanted to use non-intrusive and mini-
car or aircraft. Intelligent systems can assist the opeiato Mally invasive sensors, therefore, we did not measure EEG
such situations, but for this assistance to be really efficie (incompatible with helmets wore by helicopter or fighter
it should be adapted to the current operator's workloadilOtS for example) but restricted the measurements to EMG,
For example, task demand should be decreased in caseE6fC: SC and respiration. The reaction time (RT) to a
overload, whereas more functions should be delegated to thgcondary task was also used as a cognitive measure of
operator in case of low workload (likely to result in a lack ofvorkload [13], [1].
vigilance) [1], [2]. Being able to characterize the operato e propose Bayesian Network (BN) models that take
workload is therefore a prerequisite to adaptive intefitge @ INPuts the entropy of these physiological measurements
system. and output the change of the subject’s workload while they

Computational models have been proposed to infer sonf&€ involved in task demanding different levels of cogeitiv
cognitive states, such as workload or distraction, fronk tad€Sources. Entropy of ECG signal has been shown to be a
performance analyses or sensorimotor features (gaze, h&@@d indicator of distraction [14] but, to the best of our
movements, etc.) [3], [4], [5]. However, for these featureg_nowleO!ge, it has never been applied to other physiological
to make sense, they have to be compared to nominal valudignals in a computational model of workload.
that are dependent on the task context. Different BN structures, built from expert knowledge, are

More direct and task independent features can be elgsted, using .in turn several combinations of_ physioldgica
tracted from physiological measurements. Indeed, changi&@tures. Their performances are evaluated in term of two
in the subjects cognitive state may drive to changes ifriteria to be jointly optlr_nlzed: the_d|ver5|ty, i.e. theilitly
physiological data [6], specifically (but not exclusively)Of the moo_lel to be functional for different subjects, and the
when they are under the control of the autonomic negccuracy, i.e. how close from the workload level the model
vous system. The latter is responsible for maintaining thgrediction is. The ground truth is provided by subjective
body’s homeostasis, noticeably through the orthosympjathee"aluat'ons of Workloaq coIIected.('jurlng the experiment.
branch which mobilizes energy resources in response to theather than assessing the ability of the BN models to
changing demands of the external and internal milieu [7{nfer the workload level we focused on how good they
Thus, electrocardiogram (ECG), electromyogram (EMG)‘?re in predlctlr!g theworkload change_between successive
skin conductance (SC), and respiration were used in [8] {gsks. Indeed, in the context_ of defining adaptive intefiige
infer the stress level by drivers using linear discriminanYStems, an erroneous prediction of the workload level that

analysis. In [9], the authors developed an Artificial Neuraf€Sults in a false prediction in term of workload change. (i.e
in a predicted variation opposite to the reality) should be
This work was supported by Eurocopter absolutely avoided. It might drive the system to undertake
All authors are with Institute of Movement Sciences, UMR gactions opposite to those required by the operator's state,
CNRS 7287 & Aix-Marseille Universét, Marseille, France .
patricia. besson@ni v-amu. fr and have dramatic consequences.

The experimental protocol used to collect representative
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data and an analysis of these data are presented in sec. IIFor each of the five sessions, a secondary task was also
Sec. Il describes the proposed models, whose performanagesjuired from the subjects. Two geometrical shapes (a squar
are assessed in sec. IV in term of two criteria to be jointlpr a triangle) appeared on the screen during 1sec, at pseudo-
optimized: the diversity and the accuracy. random positions (the ring apparition zone was avoided, and
the same number of targets appeared in each of the four
screen quarters) and at pseudo-random times (no apparition
A. Subjects while the ring was crossed, and minimum time interval of
Ten subjects (9 males and 1 female, agee: 10.7 years) 1.5sec between two successive targets). The subjects had to
with normal or corrected to normal hearing and seeing, ha¥ess a button on the joystick with the forefinger as quickly

Il. MATERIAL AND METHOD

participated to the experiment. as possible in response to the square target apparitioy. The
' should not react to a triangle target.
B. Material Fig. 1 shows a typical screen shot of the simulated scene.

The subjects sit in the dark, using a non-force feedback
joystick and facing a standard 24" monitor, where the
graphical dynamic flying scenes generated by the home-
grown ICE software [15] were displayed. An experimenter’s
computer was used to acquire all the data synchronously,
using the Captiv Software [16]. These data were made of the
simulation data (e.g., aircraft position) sampled at 100Hz
and of physiological data, acquired at a sampling rate of
2048Hz using the FlexComp Infinity sensors and encoder
[17]. The subjects bore stereo headphones, so that theg coul
hear the pre-recorded instructions (the instructionsétand
content were then strictly identical for each subject) drel t
task related noises such as the engine noise (leading to a

greater immersion) or the possible alarms. Fig. 1. Screen shot of a typical flying scene created by ICE fEtio of
hit rings over the total number of rings in the trajectory appe on the
C. Procedure cockpit dashboard (e.g. 1/60) and a green or red light inelicevhether the

] . . . last ring had been hit or missed.
The subjects were asked to pilot a flying aircraft and to

do their best to follow a trajectory made of 60 rings, alter-

natively red and yellow. The trajectories varied only alongy Dependent variables
the vertical dimension. The aircraft's speed was mainthine ) L
constant at the same predefined value for all the trajestorie Performance on the primary (percentage of hit rings) and

The ratio of hit rings over the total number of rings in the2" the secondary (false and good detection rates; reaction

trajectory appeared on the cockpit dashboard. There was afdnes (RT)) tasks was recorded. The physiological varible
a green or red light indicating whether the last ring had bee?Pmp“Sed the following measurements:
hit or missed. « Hear Rate (HR) estimated from the ECG by the Captiv
The experiment was organized in 5 sessions of 6 trials. ~Software, using the R-R intervals;
Each trial lasted approximately 90%edn the three first ~« Root mean squares of the flexor digitorum EMG
sessions (labeled1A0, D2A0 and D3A0), the subjects (RMS1) and of the right trapezius descendens EMG
were presented with three different trajectories of insirgz (RMS2);
difficulty (D1, D2, and D3). The trajectories remained the « Respiration (R), measured through chest expansion;
same for the 6 trials of each session. The trajectory difficul « Skin Conductance (SC), measured using electrodes
was an independent variable meant to manipulate the task Placed on the first and little fingers of the left hand
workload requirement. It was varied by changing the vertica ~ (temperature in the room equal 16.33 + 0.98°C).
distance between two successive rings, while keeping thetinally, psychological data were also collected at the end
depth distance constant. In the two last sessions (labelefleach session. The subjects evaluated their own workload
D1A1 and D3Al) the subjects were asked to fly again orduring the performed task, using the NASA Task Load Index
the simplest and the hardest D1 and D3 trajectories, and (dLX) scale [18]. The NASA TLX asks the subjects to rate
try to beat their own mean scores over these trajectorieseir perceived workload on six different subscales (Men-
Moreover, a strident alarm was emitted in case of a missedl Demand, Physical Demand, Temporal Demand, Perfor-
ring. This challenge and the alarm were introduced in ordenance, Effort, and Frustration). At the end of the experitmen
to maintain the subjects’ motivation and implication in thehese six components are matched two by two and the
task. subjects have to choose for each couple which component
N ) o i o best described the workload in the performed task. Each
Though the speed is maintained constant, the duration of e&ths . .
not necessary the same, since the aircraft's trajectory eamdre or less component score can thus be we|ghted accordlngly to the
sinusoidal. number of times it has been chosen in the matching phase.
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. . TABLE |
In the present experiment, the NASA TLX rates on the six
CORRELATION BETWEEN THETLX SCORES AND THERT OVER THES

subscales are weighted and summed for each sessions o
. . . SESSIONS FOR EACH SUBJECT
result in a single TLX score per session.

E. Analysis of the experimental data Subject] SL | S2[S3[SA[S5[S6[S7[ S8 S9[ SIO
. . . ubjeci
Prior to build a model that will take the collected data as 0.64 0.79 0.83 0.80 0.64 0.49 0.34 0.79 0.9 0.45
input, it has to be checked that these data are repres«antativr

of the problem at hand. That is, we have to ensure that
the workload has been effectively manipulated using our

experimental paradigm, so that variations observed in the finally, this analysis establishes that subjects expeeien
physiological signals can effectively correspond to V#@i®  gifferent levels of workload during the task. This should be

of work!oad. . o reflected in the physiological data and be captured by the
The impact of the primary task difficulty on the per-qgel.

formance in both the primary and secondary tasks is as-
sessed through Analysis of Variance (ANOVA) statistical I1l. M ODEL
tests. There is no significant difference between trialsafor A. Selection of output and input features

same difficulty (p=0.13) whereas the difference is significa 5 gata driven approach to modeling problem requires

between sessions (F(4,36)=26.708, p=0.000). A post-h@g prealably assign some data with the correct class labels
analysis (Student Neuwman-Keuls) indicates that scores @@ that the relationship between the input features (derive

all se_ssions are statisti_cz_illy different € 0.001) but for the  fom the physiological data in the present case) and the
sessions of the same difficulty leveBYA0andD1AL D3AD  ¢|555es (the model’'s output) can be automatically disealver

and D3AD). The difficulty also impacts the true positive and extracted in the learning phase. As stated in sec. II-E,
(TP) detection rate of the secondary task (F(4,36)=8.8¢c can only rely on a subjective rating scale to label our

p < 0.01), though the statistical difference only holds for D3g,qnd truth. This adds some noise in the pattern recognitio
in the Student Neuwman-Keuls post-hoc analysis. Flnalltgg

X ; ) i ocess. To reduce the noise in the process as much as
the reaction times associated to these TP detections al ssible, the input features have also to be optimized: the

differ significant!y _between the different difficulty lewel more representative the features, the simpler the taskéor t
(F(4,24)=14.084; p=0.0000) (but not between each sessioR|,ssifier, thus the better its expected performance [19].

trials (p=0.03)). We have decided to use the Shannon’s entropies of the

This statistical analysis establishes firstly that SUBjeCtphysiological data as inputs for our model. The entropy
behave with a coherent resource allocation strategy insid¢ 5 random variable (V)X is a measure of the average
a given session. Secondly, as it is well-known that S€Gncertainty in X [20]. Stated in a different and simpler
ondary task competes for the limited brain resources W“\W/ay it is a measure of disorder. As such, it is likely to
the primary task (see e.g. [13], [1]), Y !

I it indicates that the.,nnre differences in physiological data related to vl
cognitive resources allocated by each subject on the pyimay,riations.

task have increased at the expense of the secondary taskgefore the entropies to be estimated, the noise in the raw

Nevertheless, these results do not insure .that the over@ll | gjgnais is firstly smoothed using a low-pass median filtee Th
of involved resources has been increased: subjects migat Ngirq; ang |ast seconds of each trial’s signal are also removed

been only partially committed in the task and have simply, ay6id possible starting and ending effects. Then, tha dat
changed the resource allocation strategy as the primaky tage normalized between 0 and 1, taking the minimal and
difficulty increased. Investigation of the subjective dataX  aximal values observed on the three first sessions (used
scores) can give us some clues about this point. Generally (4ining sessions). Entropies are estimated on 15sgc lon
speaking, the TLX scores increase with the session difficult,yingows slided by 5sec along the signals, using an histogram
An ANOVA on the TLX scores shows a significant differenceqyt 41 pins that ranges oft, 1]. Therefore, there is about
between sessions (F(4,26)=12.284, p=0.000). 90 values per sessions and per subject. Entropy values are

Table | summarizes the correlation values found for eacfiqq normalized between 0 and 1 by taking the maximal and
subject between the TLX scores and the RT, per session. iiynima| values over the three first sessions for each subject
most cases, the c_orr_elatlon is greater than 0.5._ which indi- |t .an be observed that the variation of the mean entropy
cates that the subjective evaluation of workload is CoBBISt o4y res is consistent with the variation of the perforneanc
ywth the objective measure (RT) and that subject§ committeg}, ihe primary task, the RT and the TLX scores (see Fig. 2
in the task. Values below 0.5 are not necessarily dge 0 Sowing the subject 4's features as an illustrative exanple
mismatch between subjective and objective metrics: some,ever, we observed the variation of the physiologicahdat
subjects experiencing high workload totally gave up on thg, e igigsyncratic: for some subjects, the mean entropy val
secondary task, so that RT were not availdbfihus, the o5 of some physiological data might decrease with diffjcult
relation with TLX scores is not linear anymore). levels, whereas they decrease for other subjects. As asgesul

2in that case, an arbitrary mean RT value of 1.5sec has beeniseel € .models will be individual (trained and tested on each
correlation computation. subject separately).

Preprint submitted to 2012 Intelligent Vehicles Symposium.
Received January 13, 2012.



CONFIDENTIAL. Limited circulation. For review only.

1 H(SC) 1 H(R) | HEush) | HEms?) exp(™37) and the last bin taking all the values greater than
o | oo o s exp(~9 for RT. For each subject, the training set is made
o | 0'6 o o of the data collected on the three first sessiDA$\0, D2A0
o | o o o and D3AQ. The testing set is made of the two last sessions
0'2 0'2 ' 0'2 D1Al1andD3A1 Both the learning and inference stages have
. 1 . 0.2 .. . .

. . been implemented using the Bayes Net Toolbox for Matlab

0 . . . .
LGNS LS OANS SRR SRy [21]. Because thgre are some missing data (HR in part_lcular
H(HR) Mean score (primary task) Mean RT (secondary task) NASA TLX score COUld nOt be re“ably recorded Sometlmes! and t_here IS nOt

! 100 ! necessary one RT value per measurement window), the
08 | %0 | o8 08 Expectation Maximization algorithm has been used (with a
06 | | os 06 stopping criterion of 10 iterations).

0.4] 1 0.4 0.4

02 | 70 02 02 C. Assessing the model performance

o MRMEME 0 o I The performance of the models is assessed by looking at
K S KOTSRS KOS SS KRS ) .
FIFSS FIFSS SFLS FFF S the differences in the TLX scores between (Al and the

D3A1l sessions. The model output will be deemed as correct

Fig. 2. Mean physiological feature values (entropy valdas® physiolog-  if the observed and inferred TLX scores are evolving the
ical signals, in bit), performance on the primary task (in %pation times

(RT, in sec) and NASA Task Load Index (TLX) scores for eachsisgs same V_Vay’ th?t is, if the performance indpx defined as
performed by subject 4. follow, is positive:
. . A* .
p = signa)-signA)- || if AT<A ()
B. Model definition . . A
The model aims at inferring the subject’s TLX score on = sign(A) - sign(A”) - |A* |, elsg @

each session, from the physiological features SC, R, HRjhereA is the difference between the subjects’ TLX scores
RMS1 and RMS2 To this end, different BN classifiers g session®3A1andD3A1 andA* the difference between
are tested, each taking one, two or three of the possibige predicted TLX scores on these two sessions. The quality
physiological features as inputs. As a result, 25 classifiepf the model performance is given by the distance to 1
with different physiological nodes are trained and testedine closer, the better). A fine analysis of the false model’s
Moreover, three BN structures are tested. Structure 1 isfatections is useless since we want this false detectien rat
naive BN were the TLX is a direct child of the physiologicaliy pe null. Indeed, as stated in sec. I, a false estimation of
nodes. Structure 2 is also a naive BN but TLX is now a chilghe workload variation between successive tasks can not be
of the RT, which is itself a child of the physiological nodes g¢cepted: it would lead the assistance system to undertake
Structure 3 has a more complex structure, where TLX ignadapted measures, which could have worse consequences
a direct child of both the physiological nodes and of RTiygn doing nothing.

classifier made of physiological featurés and ®. the subject set. Thus, we want the maximum number of
subjects to be correctly detected, wittpacore as close as
assessed by looking at the percentage of subjects correctly
detected §). Also, to allow for comparisons between the

Fig. 3. BN models inferring the TLX scores from physiologidehtures than p.

®, and 5 either directly (Structure 1), via RT (Structure 2), or frdooth

possible to 1. This is a two-variable optimization problem,
N ﬂ accuracy performance), the normalized area under the
RT and the physiological inputs (Structure 3). There cao &l 1 or 3 0 —=10- ZP7 0c [0, 1]. A3)

e G a where the first parameter to be optimized is the model
.“ diversity and the second, its accuracy. The model diveisity
Structure 1 Structure 2 Structure 3 curve, plotted as a decreasing function$fis used rather
physiological nodes.

IV. RESULTS
The joint propabll|ty density funlct_|ons (pdf) _descrlbed by From the Fig. 4, it can be observed that most of the models
the BN are estimated on the training set using histograms

: . are performant in either one of the twdiversity (S) or
with the following parameters (rv take on values|in1], accuracy(0) criteria. Table Il presents the best classifiers in
but RT taking on values if0, +oc[): 5 bins of width 0.2 y ' X

for the physiological rv, 20 bins of width 0.05 for TLX, term_ of a S'”g'? perforr_n_ance criterion sqlely. Hovyever, we
: . (0.2) ' . are interested in classifiers performant in both dimensions
and 16 bins of widthexp!®-#), with the first bin centered on _. .
simultaneously. The model that gives the best performance

SFor simplification purposes, the rv denoting the entropy U=t are in term of both .accuracy and d'V?rS'ty_' nameS/,: 60%. .
named as the acronyms of the corresponding physiological data and § = 0.66, is the three physiological node classifier
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TABLE Il .
BEST PERFORMANCE IN TERMS OF ACCURACY AND DIVERSITY ]
INDEPENDENTLY
Performance] Physiologica
criterion Structure nodes S 0 ]
Maximal
Accuracy 1 SC 20 0.89
Maximal =, HR and SC | 80 0.47 7
Diversity

80 920 100

HR; RM S5; SC with the structure 2. Its performance iSFig. 5. Performance of the best classifiéi &; RMSo; SC with the

0.4 W Structure3 12

plotted as a function of its diversity in Fig. 5. structure 2).
! smallest percentage of good classifiers (thought the best
0.9 . . . e
08 s results are obtained with a 2-node classifier), whereas the
0.7 — largest number of good classifiers are obtained when using
v
0.6 ¢ o three nodes.
05 e g v ‘ B 1 Node . . . .

o f g v & 2 Nodes Notice that each of the five physiological features appears
3: IS ' % 8 e v 3 Nodes in one of these good classifiers. This certainly indicates th
i E ¢ s none of these features is specific enough of the workload
01 v change. We can do the hypothesis that a classifier with five

0 physiological nodes would outperform the performance of

10 20 30 40 50 60 70 80 90 . . . .

n the classifier proposed in this work. However, since we are
training subject-dependent models, our sample sizes were t
! small to deal with a classifier with 5 physiological nodes, so
0.9 ] . .. .
o6 that we were not able to check this hypothesis in this study.
. |
0.7 o s .
06 v 8 v .s . 1
tructure 4 T
o %5 i g é ! L] ¢ Structure2 =i';:::!:
: jo£

e @ e <

0.3
0.2
0.1

10,
10 20 40 50 60 70 80 90
s
Fig. 4. Performance of the models in terms of diversity (S) arai@cy
(6), depending on the number of nodes (top) or on the structwtofn)
of the models. The best models lie in the upper right-hand sideter of
the graphes. o ; 5 s

Structure and physiological node number

Home o
®

w
o
°

Percentage of values > 50%

N

o

To analyse the impact of the number of nodes and of t . 6. Percentage of good models (with performance greaser 50%
structure on models’ performance, let us look at the besdr both accuracy and diversity criteria) for the differesttuctures and the
models, i.e., the models with a performance greater thatfferent physiological node numbers.

50% over the sets for both diversity and accuracy criteria
(these are the classifiers lying in the upper right hand side
quarter of Fig. 4). Indeed, the mean performance over the
model sets do not tell us whether good models for one In this paper, Bayesian networks are proposed to infer the
criterion are also good models for the other. The results ax@riation of the workload for operators involved in mulsika
presented on Fig. 6. Generally speaking, the percentage aftivities, from physiological and cognitive (RT) measure
models fulfilling the required “best performance” critarie  ments. The advantage of physiological measurements is that
not high (less than 15%). It is null for the models with thetheir interpretation if more independent from a specific-ope
simplest structure (structure 1), but it increases as s@on &tor task than sensorimotor features for example. Entropy
RT is added to the model (structures 2 and 3), with the bebased features are firstly derived from the raw measurements
performance being obtained with structure 3 (12%). Wheso that the models receive inputs more specific from the
comparing the models on the basis of their node numbstudied phenomenon. Different structures and number of
(whatever the structure), the use of two nodes leads to tivputs are tested and compared in term of two criteria to

V. CONCLUSIONS AND FUTURE WORK
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be jointly optimized: the accuracy and the diversity of the[s]
classifier.

The best model is the three physiological node classifier
HR; RM S5; SC with the structure 2 (workload inferred
from the physiological nodes, via the RT). However, a finerl®]
analysis of the model performances points out that each
of the five proposed physiological features might appear in7)
classifiers with good performance. Also, the performanees i
crease with the number of physiological inputs in the modelig]
This suggests that each of the five features yields infoomati
related to the workload, and that a model including all these
information would outperform the proposed classifier. Fest
on larger samples should be performed for being able to draw
conclusion on that specific point. (10]

Though the structure of the best model is the structure 2,
the relative number of good classifiers is more important
with the third tested structure (where the workload rv iglll
a child of both the physiological nodes and of the RT).
This indicates that physiological and cognitive featurasyc
complementary information about the subject's cognitivé!?]
state, extracted and used by the models. Including the RT jpy
the model yields better workload prediction, at the expense
of a slightly more task-dependent method, since it requires
a secondary task to be performed. However, there are a [(1)%]
of situations where routine tasks can be used to infer RT
values.

These are only preliminary results and refinements shoult”!
be brought to the models, as well as tests on larger sample
sizes (which should result in improved models’ perfor-
mance). It should be checked whether the best classifi%rﬁl
HR; RMS,; SC, which shows a good diversity perfor-[17]
mance, remains performant when tested on new subjects.
It is also possible that some combinations of specific phy&s]
iological features are better for some categories of stmhjec
(labile versus stabile for example). This could be checkeld®
by a deeper (subject by subject) analysis of the models’
performance.
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