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Abstract—Audiovisual perception associated to a spatial local-
ization task is investigated using a focused attention paradigm:
in presence of both acoustic and visual stimuli, subjects are
required to localize either one or the other of these stimuli.
Behavioral measures (i.e. subjects’ localization errors), as well
as skin conductance responses (i.e., components of the orienting
responses) are acquired during the experiment. The subjects’
performance on the localization task differ depending on the
sensory nature of the stimulus they have to localize. The pro-
cessing of the incoming information and the mobilized cognitive
resources also depends on the task, as suggested by the analysis of
the skin conductance responses. The latter are incorporated to a
bayesian network inferring the subjects’ error given audiovisual
stimulus positions. This amounts to provide the model with
some knowledge about the cognitive factors that interface with
multisensory perception (resulting in a different exploitation
of similar audiovisual information). As a result, the subjects’
performance are better estimated by the model.

I. I NTRODUCTION

Human beings are continuously interacting with their en-
vironment. This interaction can be characterized in term of
successive perception-action loops: the information received
through the senses are interpreted and organized in order
to build a coherent representation of the environment, used
thereafter to make decisions and to undertake actions adapted
to the individuals intentions.

Therefore, actions are not based on the reality itself, but
on an interpretation of this reality, brought by perception.
Perception is multisensory, which means that each sensory
modality yields information, used in interaction to build a
unied perceptual experience. Understanding these interactions
could provide important key in designing effective interfaces,
or assistance systems [1]–[3]. Hence, the problem of multi-
sensory integration is an active field of research. Multisensory
perception can be understood as a maximum likelihood estima-
tion process, whose purpose is to come up with a multisensory
estimate more reliable than the individual estimates (see e.g.
[4], [5]). In this perspective, it amounts essentially to a bottom-
up process. However, recent works have shown that cognitive
(top-down) processes also step in multisensory perceptionand
should be taken into account by the model (see [6] for a
review).

In [7], Kohler et al. investigated the role of intention
and attention in the perception of an ambiguous movement,

stressing the effect of voluntary control and attentional focus
on perception. Also, in previous works, we have established,
using information theory and bayesian networks (BN), that
subjects use a same audiovisual information differently de-
pending on the sensory nature (i.e., acoustic or visual) of the
stimulus they are instructed to localize [8], [9]. Therefore, the
goal and expectations of the subjects are some of the cognitive
factors modulating multisensory perception. This modulation
is certainly related to some extent to attentional mechanisms,
that prevent perceptual overload through selection mechanisms
(that are also bottom-up or top-down) interfacing multisensory
perception [10]. It is still an open question to understand how
multisensory integration and crossmodal attention are related
[2], [10].

Attentional mechanisms have been largely investigated
through the study of the orienting response, assumed as an
involuntary attentional mechanism that alerts the organism
when novel and significant stimuli occur [11]–[13]. Informa-
tion processing theories of the orienting response suggestthat
it is associated to the amount of resources allocated to the
processing of a stimulus [14]. A widely used component of
the orienting response is the skin conductance response (SCR)
[15], [16]. Indeed, electrodermal activity is mainly underthe
control of the sympathetic nervous system [15], responsible
for mobilizing the organism resources.

The purpose of this study was to further investigate the in-
terplay between cognitive factors and audiovisual perception in
a spatial localization task, using a paradigm similar to theone
presented in [8], [9]. Shortly, subjects are exposed to acoustic
and visual stimuli that are temporally but not necessary
spatiallay coincident, and must localize either the acoustic or
the visual stimulus, depending on the instruction they received.
As already mentioned, we mathematically established in [8],
[9] the difference in processing the audiovisual information
depending on the given instructions. Our hypothesis was
that these different processings of the incoming information,
likely to be related to different attentional focus, should
yield different orienting responses. Therefore, we add to the
measure of behavioral features (i.e., subjects’ pointing errors),
the analysis of the SCR, as a component of the orienting
response. Bayesian network models are proposed to investigate
the results of the experiment from a computational point of



view, the objective being to define a model of multisensory
perception where cognitive factors are acknowledged.

Sec. II details the experimental protocol. The analysis of the
experimental data is carried out in sec. III, and performance of
Bayesian network models inferring the subjects’ localization
errors using or not the SCR as input are presented. The results
of both experiment and model are discussed in sec. IV.

II. M ETHOD

A. Subjects

Four right-handed participants (mean age: 25.8 years) took
part in the experiment. They were free from any auditory
or visual defect (as attested by classical audiograms or sight
tests carried out before the experiment). All participantsgave
informed consent prior to the study, according to Aix-Marseille
University regulations and the 1964 Declaration of Helsinki.
They were nevertheless naı̈ve as to the purpose and the
manipulated factors of the experiment.

B. Material

Participants were seated in complete darkness in an ane-
choic audiovisual stimulation room. The 80ms long visual
stimuli were generated by five red light-emitting diodes
(LEDs) arranged horizontally at eye level, along the arc of
a circle of raidus 57.5 cm attached to the chair, in front of the
subject. The central LED was adjusted on the cyclopean eye
of each seated subject, the 4 other LEDs being positioned at
±10◦ and±20◦ from this central target. In addition, a white
noise emitter tweeter located just above this diode trail could
be moved circularly by the experimenter and be placed at the
same positions than the visual targets. This tweeter emitted
80ms of white noise that defined the acoustic stimuli. No prior
inspection of the setup was made available to the subjects.

C. Procedure

The experiment was divided into two counterbalanced ses-
sions, during which participants were systematically exposed
to temporally synchronous visual and auditory stimuli, and
had to judge the position of the primary stimulus, that could
be either the auditory stimulus (i.e., acoustic session) orthe
visual stimulus (i.e., visual session). To that aim, participants
were required to orient a fixed-base pointer connected to a
potentiometer towards the auditory or visual targets, depending
on the session. In both sessions, synchronous visual and
auditory stimuli were either spatially congruent or not. Inthe
latter case, the spatial mismatch between the stimulus positions
was20◦. A session was made of 300 trials, where congruent
and non-congruent stimuli were pseudo-randomly presented
with a 50% probability.

In both tasks, the displacement and the final location of
the pointer, corresponding to the perceived auditory or visual
target position, were recorded. The skin conductance (mea-
sured with electrode pairs positioned on the distal phalanges
of the left index and little fingers) was also recorded during
both sessions and was temporally related to each judgement
for subsequent analyses.

1 2 3 4
−2

0

2

4

6

8

10

12

Subject

M
ea

n 
ab

so
lu

te
 e

rr
or

 (
in

 o )

 

 
Acoustic session

Visual session

Fig. 1. Mean absolute subjects’ errors (∆) when localizing the acoustic or
visual stimuli. The error bars stand for the associated standard deviations.
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Fig. 2. Average subjects’ mean skin conductance responses (SCRs) on each
trial, during the acoustic and visual sessions.

Notice that two unisensory sessions (where only acoustic or
visual stimuli occurred) of 25 trials were also carried out in
order to get the subjects’ intrinsic errors in acoustic or visual
stimulus localizations.

III. A NALYSIS

A. Statistical analysis of the results

First of all, for each session, the subjects’ pointed positions
were normalized by substracting their mean errors on the
unimodal tasks. Though the experimental conditions (use ofan
anechoic room) permitted to produce acoustic stimuli of high
quality, we expected the subjects to be better in localizing
the visual stimuli (visual capture). Fig. 1 shows the mean
and standard deviation values of the subjects’ absolute errors
∆ (absolute value of the difference between the pointed
position and the primary stimulus position), when localizing
the acoustic and visual stimuli. Three subjects (subjects 2, 3
and 4) out of four were indeed more accurate and precise when
localizing the visual stimuli rather than the acoustic ones.
Surprisingly, it was the opposite for subject 1 (accuracy:3.6◦

in the acoustic session,7.3◦ in the visual session; precision:
2.9◦ and4.5◦ in the acoustic and visual sessions respectively).

The emission of the stimuli yielded a skin conductance
response, that decreased during the session (habituation effect).
The mean value of the SCR on each trial was analyzed. The
average value of these subjects’ mean SCRs is shown on 2, for
the acoustic and visuals sessions. It is larger in sessions where
the average∆ is larger too, i.e., in the acoustic sessions for
subjects 2, 3 and 4, and in the visual session for subject 1. It
is also worth noticing the high correlation between differences



of pointing errors in the acoustic and visual session and
differences of SCRs in these two sessions (pearson correlation
coefficientρ = .89).

Statistical tests were performed with the Matlab 7.6 Soft-
ware and globally confirm the observations based on the
visual inspection of the data. The null hypothesis stating that
subjects’ absolute errors on the acoustic and visual sessions
come from the same statistical population was tested using
Kruskall-Wallis tests, and can be rejected for each subject
(p < 0.001) but for subject 2 (p = 0.497). Kruskall-Wallis
statistical analyses of SCR mean values per trial also pointed
out a significant difference between the acoustic and visual
sessions for each subject (p < 0.001).

B. Model definition

These results state that subjects use a same available au-
diovisual information differently, depending on the task they
are instructed to perform (localization of either the acoustic
or visual stimuli), as pointed out in [8], [9]. By adding
the analysis of subjects’ SCRs to the analysis of subjects’
performance carried out in [8], [9], we observe that the two
tasks require the subjects to mobilize the organism in different
ways (i.e., the response of the autonomic nervous system,
therefore, the SCRs, differs). For each of the subject, one of
the two tasks seems to be more difficult and requires a higher
mobilization of the organism. Despite this higher mobilization,
their performance on the task is lower (though the difference
is not significant for Subject 2).

It would be interesting to test whether prediction of the
subjects’ performance can benefit from some knowledge about
the orienting response elicited by the task. Indeed, in [9],
we proposed a BN model that inferred the subjects’ judge-
ment from the positions of the emitted stimuli (bottom-up
information). We showed that introducing in the model a
rv N that stood for the sensory nature of the stimulus to
be localized (i.e., the instructions received by the subjects
and modulating their objectives, hence, cognitive factorsinter-
facing multisensory perception) changed the structure of the
BN model. Now, we want to investigate whether providing
the model with undirect knowledge about these cognitive
factors, in the form of the skin conductance component of the
subjects’ orienting responses, would give means to the model
for discrimating between different ways of handling the same
available information.

To this end, we tested in turn two BN models. In a first
one,M1, random variables (rvs) modeling the positionsS1

andS2 of the primary and secondary stimuli were the inputs
of the model, which infers the subjects’ absolute localization
error ∆. In the second model,M2, the subjects’ mean skin
conductance responseSCR was also used as input for the
model to predict∆1. The two models are shown on Fig. 3.

The probability density functions (pdfs) of the rvsS1 and
S2 were estimated using multinomial approaches, both of them

1For simplification purpose, the rvs are named using the same acronyms
than the signal they stand for.
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Fig. 3. Bayesian networks used to infer the subjects’ absolute error when
localizing the primary stimulusS1. (a) without the meanSCR (modelM1);
(b) with the meanSCR as input (modelM2).

TABLE I
MODELS’ ERRORSE1 (MODEL M1 , WITHOUT SCR) AND E2 (MODEL

M2 , WITH SCR). THE NORMALIZED DIFFERENCE BETWEEN THE

MODELS’ ERRORS ARE ALSO GIVEN.

Subject 1 2 3 4
E1 0.1611 0.2374 0.1331 0.1080
E2 0.1533 0.2124 0.1317 0.1068

(E2 − E1)/E1 -4.84% -10.53% -1.05% -1.11%

taking on values on the set{0,±10,±20}. The subjects’
absolute errors were first normalized between 0 and 1, by
taking the minimal and maximal errors on the experiment.
They were modeled by the rv∆, whose pdf is estimated
using histogram of bins 0.2 width. The subjects’ mean skin
conductance responsesSCR were also normalized between 0
and 1 for each subject, using the minimal and maximal values
found on the whole experiment. The pdf of the rvSCR was
estimated using histograms of bins 0.1 width.

C. Model performance

The models were trained using a leave-one-out cross-
validation scheme [17]: training was performed using all the
observations but one, and testing on the remaining value,
in turn over the 600 observations2 of the dataset. Both the
learning and inference stages were implemented using the
Bayes Net Toolbox for Matlab [18]. The models’ errors are
defined asE = |∆∗ −∆|, where∆∗ is the subject’s absolute
error inferred by the model and∆ the observed absolute error.
E1 is the mean error of modelM1 andE2 the mean error of
modelM2.

The models’ performance are summarized in Table. I.
Adding SCR to the model increases its performance:E2 is
10% lower thanE1 for subject 2, and almost5% lower for
subject 2. For subjects 3 and 4, the gain is not as high as could
be expected (maybe because of the use of very simple SCR
features), though performance of modelM2 still improve as
compared to modelM1.

IV. D ISCUSSION

Multisensory perception refers to the exploitation and in-
terpretation of the sensory information received through our
multiple sensory captors. Different sensory percepts can be
produced in presence of the same exogeneous stimulation, due
to bottom-up factors (related to stimulus properties), butalso,

2Two sessions of 300 trials.



top-down (cognitive) factors (knowledge, expectation, goals of
the individual), that step in the process and should be taken
into account by models of multisensory perception. This paper
addresses the problem of accounting for cognitive factors in
multisensory perception.

In the present experiment, subjects were required to make
different use of the similar audiovisual information they re-
ceived: in two different sessions, they had to localize either the
acoustic or the visual stimulus, while both stimulus modalities
were synchronously presented, in either conguent or non-
congruent positions. The subjects’ performance are not the
same over the two sessions. According to maximum likelihood
estimation model of multisensory perception [4], [5], the
integration of multisensory information aims at optimizing
the reliability of the integrated percept. Therefore, bottom-up
factors will tend to favor the use of the more reliable source
of information for the task at hand, that is, usually, visual
information for a spatial localization task. Actually, three
subjects out of four unsurprisingly reached better performance
in the visual than in the acoustic localization task, but one
subject (subject 1) shows the opposite performance scheme.
Analyzing the subjects’ field dependence or independence
might have provided us with some explanations about this
point (subject 1 seems to spatially localize stimuli with a
higher reliability using the acoustic information).

Because of the randomness of the stimulus spatial con-
gruency, subjects could not try to take advantage of the
audiovisual information to perform the task, but should indeed
focus on the stimulus of the primary modality (modality to
be localized). This scheme can be understood as a focused
attention paradigm [19]. One of the two tasks certainly im-
pedes more than the other the subjects’ “natural” way of
processing the information: they will have to specifically drive
their attention away from the modality they preferably rely
on for a spatial localization task, in order to conform to the
received instructions.

The process of organizing and interpreting the sensory in-
puts requires cognitive resources [20], that we can hypothesize
to be different between the two tasks. To investigate this
hypothesis, we recorded the skin conductance component of
the orienting response, presumed to reflect the processing
of incoming information through the related changes in the
autonomic nervous system [21], [22]. The observations made
on the SCR acquired during the acoustic and visual sessions
confirm a different level of organism mobilization depending
on the tasks: the mean SCRs on trials where subjects try to
localize the acoustic stimuli differ from the mean SCRs on
trials where they aim at localizing the visual one. Moreover,
the higher level of cognitive resources mobilized by the subject
(as reflected by higher mean SCRs) to perform the – presum-
ably – more difficult task do not prevent the performance to
decrease (positive pearson correlation coefficient between the
performance and the mean SCRs).

We tried to exploit this interesting relationship between
resource level and performance in a simple naı̈ve Bayesian
model. Indeed, a model trying to infer the subjects’ errors

from knowledge of the stimulus positions solely cannot predict
the subjects’ performance differences due to various subjects’
objectives or focus of attention, i.e., due to the interference
of cognitive factors. In [9], these cognitive factors were
introduced in the model through a rv modeling the instructions
received by the subject. As a result, the structure of the
BN model changed depending on the sensory nature of the
stimulus to be localized. In this paper, we propose a BN that
takes as inputs not only the audiovisual stimulus positions, but
also the mean SCR on each trial: this model achieves better
performance than a BN where this SCR information is not
available. These results show that adding to the model some
knowledge about the subjects’ orienting response, through
the SCR, helps the model to discriminate between different
performance schemes. That is, it provides the model with
some clues about these different ways of processing a similar
incoming sensory information, depending on hidden factors
related to different subjects’ objectives (cognitive factors).

V. CONCLUSION

We do think that these results could be used with advantage
in human factor engineering, for the design of efficient inter-
active systems. However, these are only preliminary results,
that require to be tested on larger subject sets prior to be
robustly established. Also, the improvment of the model’s
performance obtained when takingSCR into account is not
as high as what could be expected. Optimizing the features
extracted from the skin conductance signal (amplitude and
slope of the SCRs instead of the mean value for example) as
well as including temporal information about the SCR signal
(habituation characteristic in particular) and subjects’error
dynamics, should lead to better results.
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